scholarly journals Urinary Biomarkers for Diagnosis and Prediction of Acute Kidney Allograft Rejection: A Systematic Review

2020 ◽  
Vol 21 (18) ◽  
pp. 6889 ◽  
Author(s):  
Francesco Guzzi ◽  
Luigi Cirillo ◽  
Elisa Buti ◽  
Francesca Becherucci ◽  
Carmela Errichiello ◽  
...  

Noninvasive tools for diagnosis or prediction of acute kidney allograft rejection have been extensively investigated in recent years. Biochemical and molecular analyses of blood and urine provide a liquid biopsy that could offer new possibilities for rejection prevention, monitoring, and therefore, treatment. Nevertheless, these tools are not yet available for routine use in clinical practice. In this systematic review, MEDLINE was searched for articles assessing urinary biomarkers for diagnosis or prediction of kidney allograft acute rejection published in the last five years (from 1 January 2015 to 31 May 2020). This review follows the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines. Articles providing targeted or unbiased urine sample analysis for the diagnosis or prediction of both acute cellular and antibody-mediated kidney allograft rejection were included, analyzed, and graded for methodological quality with a particular focus on study design and diagnostic test accuracy measures. Urinary C-X-C motif chemokine ligands were the most promising and frequently studied biomarkers. The combination of precise diagnostic reference in training sets with accurate validation in real-life cohorts provided the most relevant results and exciting groundwork for future studies.

2019 ◽  
Author(s):  
Sun Jae Moon ◽  
Jin Seub Hwang ◽  
Rajesh Kana ◽  
John Torous ◽  
Jung Won Kim

BACKGROUND Over the recent years, machine learning algorithms have been more widely and increasingly applied in biomedical fields. In particular, its application has been drawing more attention in the field of psychiatry, for instance, as diagnostic tests/tools for autism spectrum disorder. However, given its complexity and potential clinical implications, there is ongoing need for further research on its accuracy. OBJECTIVE The current study aims to summarize the evidence for the accuracy of use of machine learning algorithms in diagnosing autism spectrum disorder (ASD) through systematic review and meta-analysis. METHODS MEDLINE, Embase, CINAHL Complete (with OpenDissertations), PsyINFO and IEEE Xplore Digital Library databases were searched on November 28th, 2018. Studies, which used a machine learning algorithm partially or fully in classifying ASD from controls and provided accuracy measures, were included in our analysis. Bivariate random effects model was applied to the pooled data in meta-analysis. Subgroup analysis was used to investigate and resolve the source of heterogeneity between studies. True-positive, false-positive, false negative and true-negative values from individual studies were used to calculate the pooled sensitivity and specificity values, draw SROC curves, and obtain area under the curve (AUC) and partial AUC. RESULTS A total of 43 studies were included for the final analysis, of which meta-analysis was performed on 40 studies (53 samples with 12,128 participants). A structural MRI subgroup meta-analysis (12 samples with 1,776 participants) showed the sensitivity at 0.83 (95% CI-0.76 to 0.89), specificity at 0.84 (95% CI -0.74 to 0.91), and AUC/pAUC at 0.90/0.83. An fMRI/deep neural network (DNN) subgroup meta-analysis (five samples with 1,345 participants) showed the sensitivity at 0.69 (95% CI- 0.62 to 0.75), the specificity at 0.66 (95% CI -0.61 to 0.70), and AUC/pAUC at 0.71/0.67. CONCLUSIONS Machine learning algorithms that used structural MRI features in diagnosis of ASD were shown to have accuracy that is similar to currently used diagnostic tools.


Author(s):  
Joseph Pryce ◽  
Lisa J Reimer

Abstract Background Molecular xenomonitoring (MX), the detection of pathogen DNA in mosquitoes, is a recommended approach to support lymphatic filariasis (LF) elimination efforts. Potential roles of MX include detecting presence of LF in communities and quantifying progress towards elimination of the disease. However, the relationship between MX results and human prevalence is poorly understood. Methods :We conducted a systematic review and meta-analysis from all previously conducted studies that reported the prevalence of filarial DNA in wild-caught mosquitoes (MX rate) and the corresponding prevalence of microfilaria (mf) in humans. We calculated a pooled estimate of MX sensitivity for detecting positive communities at a range of mf prevalence values and mosquito sample sizes. We conducted a linear regression to evaluate the relationship between mf prevalence and MX rate. Results We identified 24 studies comprising 144 study communities. MX had an overall sensitivity of 98.3% (95% CI 41.5, 99.9%) and identified 28 positive communities that were negative in the mf survey. Low sensitivity in some studies was attributed to small mosquito sample sizes (<1,000) and very low mf prevalence (<0.25%). Human mf prevalence and mass drug administration status accounted for approximately half of the variation in MX rate (R 2 = 0.49, p<0.001). Data from longitudinal studies showed that, within a given study area, there is a strong linear relationship between MX rate and mf prevalence (R 2 = 0.78, p < 0.001). Conclusion MX shows clear potential as tool for detecting communities where LF is present and as a predictor of human mf prevalence.


Author(s):  
Falk Schwendicke ◽  
Akhilanand Chaurasia ◽  
Lubaina Arsiwala ◽  
Jae-Hong Lee ◽  
Karim Elhennawy ◽  
...  

Abstract Objectives Deep learning (DL) has been increasingly employed for automated landmark detection, e.g., for cephalometric purposes. We performed a systematic review and meta-analysis to assess the accuracy and underlying evidence for DL for cephalometric landmark detection on 2-D and 3-D radiographs. Methods Diagnostic accuracy studies published in 2015-2020 in Medline/Embase/IEEE/arXiv and employing DL for cephalometric landmark detection were identified and extracted by two independent reviewers. Random-effects meta-analysis, subgroup, and meta-regression were performed, and study quality was assessed using QUADAS-2. The review was registered (PROSPERO no. 227498). Data From 321 identified records, 19 studies (published 2017–2020), all employing convolutional neural networks, mainly on 2-D lateral radiographs (n=15), using data from publicly available datasets (n=12) and testing the detection of a mean of 30 (SD: 25; range.: 7–93) landmarks, were included. The reference test was established by two experts (n=11), 1 expert (n=4), 3 experts (n=3), and a set of annotators (n=1). Risk of bias was high, and applicability concerns were detected for most studies, mainly regarding the data selection and reference test conduct. Landmark prediction error centered around a 2-mm error threshold (mean; 95% confidence interval: (–0.581; 95 CI: –1.264 to 0.102 mm)). The proportion of landmarks detected within this 2-mm threshold was 0.799 (0.770 to 0.824). Conclusions DL shows relatively high accuracy for detecting landmarks on cephalometric imagery. The overall body of evidence is consistent but suffers from high risk of bias. Demonstrating robustness and generalizability of DL for landmark detection is needed. Clinical significance Existing DL models show consistent and largely high accuracy for automated detection of cephalometric landmarks. The majority of studies so far focused on 2-D imagery; data on 3-D imagery are sparse, but promising. Future studies should focus on demonstrating generalizability, robustness, and clinical usefulness of DL for this objective.


PLoS ONE ◽  
2017 ◽  
Vol 12 (6) ◽  
pp. e0180045 ◽  
Author(s):  
Jung-Woo Seo ◽  
Haena Moon ◽  
Se-Yun Kim ◽  
Ju-Young Moon ◽  
Kyung Hwan Jeong ◽  
...  

1997 ◽  
Vol 108 (1) ◽  
pp. 63-68 ◽  
Author(s):  
S. M. STEPKOWSKI ◽  
L. TIAN ◽  
K. L. NAPOLI ◽  
R. GHOBRIAL ◽  
M. E. WANG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document