scholarly journals S-Adenosylmethionine Inhibits Cell Growth and Migration of Triple Negative Breast Cancer Cells through Upregulating MiRNA-34c and MiRNA-449a

2020 ◽  
Vol 22 (1) ◽  
pp. 286
Author(s):  
Alessandra Coppola ◽  
Concetta Paola Ilisso ◽  
Antonietta Stellavato ◽  
Chiara Schiraldi ◽  
Michele Caraglia ◽  
...  

Triple-negative breast cancer (TNBC) is one of the most common malignancies worldwide and shows maximum invasiveness and a high risk of metastasis. Recently, many natural compounds have been highlighted as a valuable source of new and less toxic drugs to enhance breast cancer therapy. Among them, S-adenosyl-L-methionine (AdoMet) has emerged as a promising anti-cancer agent. MicroRNA (miRNA or miR)-based gene therapy provides an interesting antitumor approach to integrated cancer therapy. In this study, we evaluated AdoMet-induced modulation of miRNA-34c and miRNA-449a expression in MDA-MB-231 and MDA-MB-468 TNBC cells. We demonstrated that AdoMet upregulates miR-34c and miR-449a expression in both cell lines. We found that the combination of AdoMet with miR-34c or miR-449a mimic strongly potentiated the pro-apoptotic effect of the sulfonium compound by a caspase-dependent mechanism. For the first time, by video time-lapse microscopy, we showed that AdoMet inhibited the in vitro migration of MDA-MB-231 and MDA-MB-468 cells and that the combination with miR-34c or miR-449a mimic strengthened the effect of the sulfonium compound through the modulation of β-catenin and Small Mother Against Decapentaplegic (SMAD) signaling pathways. Our results furnished the first evidence that AdoMet exerts its antitumor effects in TNBC cells through upregulating the expression of miR-34c and miR-449a.

2021 ◽  
Vol 17 (12) ◽  
pp. 2351-2363
Author(s):  
Zeliang Wu ◽  
Lin Zhu ◽  
Junhua Mai ◽  
Haifa Shen ◽  
Rong Xu

Due to its high heterogeneity and aggressiveness, cytotoxic chemotherapy is still a mainstay treatment for triple negative breast cancer. Unfortunately, the above mentioned has not significantly ameliorated TNBC patients and induces drug resistance. Exploring the mechanisms underlying the chemotherapy sensitivity of TNBC and developing novel sensitization strategies are promising approaches for improving the prognosis of patients. Rad51, a key regulator of DNA damage response pathway, repairs DNA damage caused by genotoxic agents through “homologous recombination repair.” Therefore, Rad51 inhibition may increase TNBC cell sensitivity to anticancer agents. Based on these findings, we first designed Rad51 siRNA to inhibit the Rad51 protein expression in vitro and evaluated the sensitivity of TNBC cells to doxorubicin. Subsequently, we constructed discoidal porous silicon microparticles (pSi) and encapsulated discoidal 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) liposomes/siRad51 (PS-DOPC/siRad51) to explore the synergistic antitumor effects of siRad51 and doxorubicin on two mouse models of TNBC in vivo. Our in vitro studies indicated that siRad51 enhanced the efficacy of DOX chemotherapy and significantly suppressed TNBC cell proliferation and metastasis. This effect was related to apoptosis induction and epithelial to mesenchymal transition (EMT) inhibition. siRad51 altered the expression of apoptosis- and EMT-related proteins. In orthotopic and lung metastasis xenograft models, the administration of PS-DOPC/siRad51 in combination with DOX significantly alleviated the primary tumor burden and lung metastasis, respectively. Our current studies present an efficient strategy to surmount chemotherapy resistance in TNBC through microvector delivery of siRad51.


SpringerPlus ◽  
2014 ◽  
Vol 3 (1) ◽  
pp. 417 ◽  
Author(s):  
Masato Terashima ◽  
Kazuko Sakai ◽  
Yosuke Togashi ◽  
Hidetoshi Hayashi ◽  
Marco A De Velasco ◽  
...  

Cancers ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 91 ◽  
Author(s):  
Valentina Maggisano ◽  
Marilena Celano ◽  
Rocco Malivindi ◽  
Ines Barone ◽  
Donato Cosco ◽  
...  

Inhibition of bromo-and extra-terminal domain (BET) proteins, epigenetic regulators of genes involved in cell viability, has been efficiently tested in preclinical models of triple negative breast cancer (TNBC). However, the use of the selective BET-inhibitor JQ1 on humans is limited by its very short half-life. Herein, we developed, characterized and tested a novel formulation of nanoparticles containing JQ1 (N-JQ1) against TNBC in vitro and in vivo. N-JQ1, prepared using the nanoprecipitation method of preformedpoly-lactid-co-glycolic acid in an aqueous solution containing JQ1 and poloxamer-188 as a stabilizer, presented a high physico-chemical stability. Treatment of MDA-MB 157 and MDA-MB 231 TNBC cells with N-JQ1 determined a significant decrease in cell viability, adhesion and migration. Intra-peritoneal administration (5 days/week for two weeks) of N-JQ1 in nude mice hosting a xenograft TNBC after flank injection of MDA-MB-231 cells determined a great reduction in the growth and vascularity of the neoplasm. Moreover, the treatment resulted in a minimal infiltration of nearby tissues. Finally, the encapsulation of JQ1 in nanoparticles improved the anticancer efficacy of this epigenetic compound against TNBC in vitro and in vivo, opening the way to test it in the treatment of TNBC.


2020 ◽  
Author(s):  
Yu-Chen Cai ◽  
Hang Yang ◽  
Ke-Feng Wang ◽  
Tan-Huan Chen ◽  
Wen-Qi Jiang ◽  
...  

Abstract Background: Triple-negative breast cancer (TNBC) patients have relatively poor clinical outcomes. A marker predicting the prognosis of patients with TNBC could help guide treatment. Extensive evidence demonstrates that angiopoietin-like 4 (ANGPTL4) is involved in the regulation of cancer growth, metastasis and angiogenesis. Therefore, its role in TNBC is of interest.Methods: We tested the ANGPTL4 expression level in tumor tissues by immunohistochemistry (IHC) and detected its association with the clinical features of TNBC patients. Next, the effects and mechanisms of ANGPTL4 on TNBC cell migration and adhesion were investigated.Results: We found that ANGPTL4 overexpression was associated with favorable outcomes in TNBC patients. ANGPTL4 upregulation inhibited cell adhesion, migration and invasion in vitro. Further analyses demonstrated that the possible mechanism might involve suppression of TNBC progression by interacting with extracellular matrix-related genes.Conclusions: The present findings demonstrated that enhancement of ANGPTL4 expression might inversely correlate with TNBC progression. ANGPTL4 is a promising marker of TNBC and should be evaluated in further studies. Trial registration: Retrospectively registered.


2020 ◽  
Author(s):  
Yu-Chen Cai ◽  
Hang Yang ◽  
Ke-Feng Wang ◽  
Tan-Huan Chen ◽  
Wen-Qi Jiang ◽  
...  

Abstract Background: Triple-negative breast cancer (TNBC) patients have relatively poor clinical outcomes. A marker predicting the prognosis of patients with TNBC could help guide treatment. Extensive evidence demonstrates that angiopoietin-like 4 (ANGPTL4) is involved in the regulation of cancer growth, metastasis and angiogenesis. Therefore, its role in TNBC is of interest.Methods: We tested the ANGPTL4 expression level in tumor tissues by immunohistochemistry (IHC) and detected its association with the clinical features of TNBC patients. Next, the effects and mechanisms of ANGPTL4 on TNBC cell migration and adhesion were investigated.Results: We found that ANGPTL4 overexpression was associated with favorable outcomes in TNBC patients. ANGPTL4 upregulation inhibited cell adhesion, migration and invasion in vitro. Further analyses demonstrated that the possible mechanism might involve suppression of TNBC progression by interacting with extracellular matrix-related genes.Conclusions: The present findings demonstrated that enhancement of ANGPTL4 expression might inversely correlate with TNBC progression. ANGPTL4 is a promising marker of TNBC and should be evaluated in further studies. Trial registration: Retrospectively registered.


BMC Cancer ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Yu-Chen Cai ◽  
Hang Yang ◽  
Ke-Feng Wang ◽  
Tan-Huan Chen ◽  
Wen-Qi Jiang ◽  
...  

Abstract Background Triple-negative breast cancer (TNBC) patients have relatively poor clinical outcomes. A marker predicting the prognosis of patients with TNBC could help guide treatment. Extensive evidence demonstrates that angiopoietin-like 4 (ANGPTL4) is involved in the regulation of cancer growth, metastasis and angiogenesis. Therefore, its role in TNBC is of interest. Methods: We tested the ANGPTL4 expression level in tumor tissues by immunohistochemistry (IHC) and detected its association with the clinical features of TNBC patients. Next, the effects and mechanisms of ANGPTL4 on TNBC cell migration and adhesion were investigated. Results We found that ANGPTL4 overexpression was associated with favorable outcomes in TNBC patients. ANGPTL4 upregulation inhibited cell adhesion, migration and invasion in vitro. Further analyses demonstrated that the possible mechanism might involve suppression of TNBC progression by interacting with extracellular matrix-related genes. Conclusions The present findings demonstrated that enhancement of ANGPTL4 expression might inversely correlate with TNBC progression. ANGPTL4 is a promising marker of TNBC and should be evaluated in further studies. Trial registration Retrospectively registered.


2016 ◽  
Vol 397 (1) ◽  
pp. 75-83 ◽  
Author(s):  
Shao Wu ◽  
Zhi Luo ◽  
Peng-Jiu Yu ◽  
Hui Xie ◽  
Yu-Wen He

Abstract Inhibitor of histone deacetylases (HDACIs) have great therapeutic value for triple negative breast cancer (TNBC) patients. Interestingly, our present study reveals that suberoyl anilide hydroxamic acid (SAHA), one of the most advanced pan-HDAC inhibitor, can obviously promote in vitro motility of MDA-MB-231 and BT-549 cells via induction of epithelial-mesenchymal transition (EMT). SAHA treatment significantly down-regulates the expression of epithelial markers E-cadherin (E-Cad) while up-regulates the mesenchymal markers N-cadherin (N-Cad), vimentin (Vim) and fibronectin (FN). However, SAHA has no effect on the expression and nuclear translocation of EMT related transcription factors including Snail, Slug, Twist and ZEB. While SAHA treatment down-regulates the protein and mRNA expression of FOXA1 and then decreases its nuclear translocation. Over-expression of FOXA1 markedly attenuates SAHA induced EMT of TNBC cells. Further, silence of HDAC8, while not HDAC6, alleviates the down-regulation of FOXA1 and up-regulation of N-Cad and Vim in MDA-MB-231 cells treated with SAHA. Collectively, our present study reveals that SAHA can promote EMT of TNBC cells via HDAC8/FOXA1 signals, which suggests that more attention should be paid when SAHA is used as anti-cancer agent for cancer treatment.


2016 ◽  
Vol 22 ◽  
pp. 3666-3672 ◽  
Author(s):  
Lingmi Hou ◽  
Maoshan Chen ◽  
Hongwei Yang ◽  
Tianyong Xing ◽  
Jingdong Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document