scholarly journals Insulin’s Discovery: New Insights on Its Hundredth Birthday: From Insulin Action and Clearance to Sweet Networks

2021 ◽  
Vol 22 (3) ◽  
pp. 1030
Author(s):  
Melanie Leroux ◽  
Martial Boutchueng-Djidjou ◽  
Robert Faure

In 2021, the 100th anniversary of the isolation of insulin and the rescue of a child with type 1 diabetes from death will be marked. In this review, we highlight advances since the ingenious work of the four discoverers, Frederick Grant Banting, John James Rickard Macleod, James Bertram Collip and Charles Herbert Best. Macleoad closed his Nobel Lecture speech by raising the question of the mechanism of insulin action in the body. This challenge attracted many investigators, and the question remained unanswered until the third part of the 20th century. We summarize what has been learned, from the discovery of cell surface receptors, insulin action, and clearance, to network and precision medicine.

2021 ◽  
Vol 11 (2) ◽  
pp. 45-46
Author(s):  
Ahed J Alkhatib

The diabetes as a disease has been reported for 3500 years. Although diagnostic and therapeutic approaches have continuously developed, no definitive therapeutic approaches have so far been reached. Diabetes is not a single disease; it interferes with various systems in the body including nervous system and cardiovascular system. The therapeutic lines for type 1 diabetes start with insulin and will need another treatment such as metformin. On the other hand, type 2 diabetes treatment strategies start with metformin and there will be a need for another treatment, insulin according to the disease progression. At certain point, both types of diabetes are treated applying the same strategies. In this study, we followed another strategy by applying the use of apple cider vinegar in patient with type 1 diabetes, and patient with type 2 diabetes following getting each meal. The results showed that glucose levels were within reference range after five days. Taken together, the use of apple cider vinegar as a secondary treatment line with conventional diabetic treatment is promising and needs to be further investigated


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Arthur Bertachi ◽  
Lyvia Biagi ◽  
Aleix Beneyto ◽  
Josep Vehí

The artificial pancreas (AP) is a system intended to control blood glucose levels through automated insulin infusion, reducing the burden of subjects with type 1 diabetes to manage their condition. To increase patients’ safety, some systems limit the allowed amount of insulin active in the body, known as insulin-on-board (IOB). The safety auxiliary feedback element (SAFE) layer has been designed previously to avoid overreaction of the controller and thus avoiding hypoglycemia. In this work, a new method, so-called “dynamic rule-based algorithm,” is presented in order to adjust the limits of IOB in real time. The algorithm is an extension of a previously designed method which aimed to adjust the limits of IOB for a meal with 60 grams of carbohydrates (CHO). The proposed method is intended to be applied on hybrid AP systems during 24 h operation. It has been designed by combining two different strategies to set IOB limits for different situations: (1) fasting periods and (2) postprandial periods, regardless of the size of the meal. The UVa/Padova simulator is considered to assess the performance of the method, considering challenging scenarios. In silico results showed that the method is able to reduce the time spent in hypoglycemic range, improving patients’ safety, which reveals the feasibility of the approach to be included in different control algorithms.


2011 ◽  
Vol 165 (1) ◽  
pp. 77-84 ◽  
Author(s):  
Ajay Varanasi ◽  
Natalie Bellini ◽  
Deepti Rawal ◽  
Mehul Vora ◽  
Antoine Makdissi ◽  
...  

ObjectiveTo determine whether the addition of liraglutide to insulin to treat patients with type 1 diabetes leads to an improvement in glycemic control and diminish glycemic variability.Subjects and methodsIn this study, 14 patients with well-controlled type 1 diabetes on continuous glucose monitoring and intensive insulin therapy were treated with liraglutide for 1 week. Of the 14 patients, eight continued therapy for 24 weeks.ResultsIn all the 14 patients, mean fasting and mean weekly glucose concentrations significantly decreased after 1 week from 130±10 to 110±8 mg/dl (P<0.01) and from 137.5±20 to 115±12 mg/dl (P<0.01) respectively. Glycemic excursions significantly improved at 1 week. The mean s.d. of glucose concentrations decreased from 56±10 to 26±6 mg/dl (P<0.01) and the coefficient of variation decreased from 39.6±10 to 22.6±7 (P<0.01). There was a concomitant fall in the basal insulin from 24.5±6 to 16.5±6 units (P<0.01) and bolus insulin from 22.5±4 to 15.5±4 units (P<0.01).In patients who continued therapy with liraglutide for 24 weeks, mean fasting, mean weekly glucose concentrations, glycemic excursions, and basal and bolus insulin dose also significantly decreased (P<0.01). HbA1c decreased significantly at 24 weeks from 6.5 to 6.1% (P=0.02), as did the body weight by 4.5±1.5 kg (P=0.02).ConclusionLiraglutide treatment provides an additional strategy for improving glycemic control in type 1 diabetes. It also leads to weight loss.


2021 ◽  
Vol 17 (4) ◽  
pp. 304-307
Author(s):  
O.A. Goncharova

Background. The climacteric period in women with type 1 diabetes mellitus (DM1) initiates an additional damaging effect on the existing cardinal pathology associated with DM. The purpose was to establish the features of geometric remodeling of the left ventricle (LV) of the heart in women with DM1 during the climacteric period. Materials and methods. The study involved 60 women with type 1 diabetes at the age of 48.74 ± 0.65 years, inclu­ding 41 perimenopausal and 19 postmenopausal ones. The control group consisted of 20 women without diabetes mellitus at the age of 50.02 ± 0.71 years. According to echocardiography, taking into account the stage of menopause, the indicators of the end-diastolic volume (EDV) and size (EDS), the posterior wall thickness of the LV (LVPWT) and the interventricular septum (IVST) were analyzed. The frequency of various types of geometric remodeling of the left ventricle of the heart was analyzed using the Penn Convention formula; for this, the LV myocardial mass index (LVMI) was calculated according to the formulas LVMI = 1.04 [(EDS + LVPWT + IVST)3 – EDS3] – 13.6 (LVMI = ratio LVMI to the plane of the body surface (A) in m2; AM2 = 1 + Weight + Δh / 100, where Δh is the difference between the height of a woman and 160 cm) and the relative wall thickness of the LV (LVRWT) LVRWT = 2LVPWT / EDS. Based on these data, the frequency of various types of geometric remodeling was established: normal geometry, concentric remode­ling, concentric or eccentric LV hypertrophy. Results. The data obtained indicate that postmenopausal women present a significant decrease in the frequency of normal heart geometry compared to perimenopausal women (26.4 versus 75.6 %, p < 0.001) and the frequency of concentric LV remodeling 3.5 times increases (26.3 versus 7.3 %, respectively). Concentric hypertrophy and eccentric LV hypertrophy prevailed 2.5 times in postmenopausal women (31.6 versus 12.1 % and 12.7 versus 4.9 %). Conclusions. In perimenopausal women with type 1 diabetes mellitus, in almost a quarter of cases, geometric remodeling of the left ventricle of the heart takes place. In postmenopausal women with estrogen deficiency, the frequency of pathologi­cal forms of heart geometry exceeds 75 %. The strategy of therapy for cardiac pathology in menopausal women against the background of DM1 should take into account the pathogenetic mechanisms of pathology associated with impaired carbohydrate metabolism and atherogenic measurements against the background of estrogen deficiency as well as limit polypharmacy.


2020 ◽  
Vol 21 (2) ◽  
Author(s):  
Lindsay Elisha Wald

NPTX2 (neuronal pentraxin-2) is a synaptic protein found abundantly in only two locations in a healthy human body: the brain and the pancreas, specifically islet of Langerhans cells. NPTX2’s role in the brain has been a focus of study in the pathology of Parkinson’s disease, as it is upregulated in PD patients. Its primary functions in the brain are to establish excitatory synapses and to recruit alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors to said synapses. These AMPA receptors signal for the neurotransmitter, glutamate, that regulates insulin secretion. This is of pathological significance to the onset of type 1 diabetes. Type 1 diabetes is characterized by the depletion of islet β-cells in the pancreas, which are responsible for insulin secretion. Without a supply of insulin, fatal consequences will ensue. NPTX2’s function in the pancreas is unstudied and extremely relevant to unraveling the complex processes that the body undergoes with the onset of this autoimmune disease. In recent mRNA studies, NPTX2 mRNA was significantly downregulated in type 1 diabetes. To understand the underlying cause of this downregulation and its potential role in the destruction of islet β-cells, it is first necessary to localize NPTX2 in the islet cells of type 1 diabetic, auto-antibody positive, and control donors. Immunofluorescent staining indicates that NPTX2’s co-expression in 


Author(s):  
Ammira Akil ◽  
Laila Ali ◽  
Esraa Yassin ◽  
Khalid A. Fakhro ◽  
Sujitha Jeya ◽  
...  

Type 1 diabetes (T1D) is an autoimmune condition where the body&rsquo;s immune cells destroy their insulin-producing pancreatic beta-cells leading to dysregulated glycaemia. Individuals with T1D control their blood glucose through exogenous insulin replacement therapy, often using multiple daily injections or pumps. However, failure to accurately mimic intrinsic glucose regulation results in glucose fluctuations and long-term complications impacting key organs such as the heart, kidneys, and/or the eyes. It is well-established that genetic and environmental factors contribute to the initiation and progression of type 1 diabetes, but recent studies show that epigenetic modifications are also important. Here, we discuss key epigenetic modifications associated with type 1 diabetes pathogenesis and discuss how recent research is finding ways to harness epigenetic mechanisms to prevent, reverse, or manage type 1 diabetes.


2020 ◽  
Author(s):  
Nur’Amanina Mohd Sohadi ◽  
Ayub Md Som ◽  
Noor Shafina Mohd Nor ◽  
Nur Farhana Mohd Yusof ◽  
Sherif Abdulbari Ali ◽  
...  

AbstractBackgroundType 1 diabetes mellitus (T1DM) occurs due to inability of the body to produce sufficient amount of insulin to regulate blood glucose level (BGL) at normoglycemic range between 4.0 to 7.0 mmol/L. Thus, T1DM patients require to do self-monitoring blood glucose (SMBG) via finger pricks and depend on exogenous insulin injection to maintain their BGL which is very painful and exasperating. Ongoing works on artificial pancreas device nowadays focus primarily on a computer algorithm which is programmed into the controller device. This study aims to simulate so-called improved equations from the Hovorka model using actual patients’ data through in-silico works and compare its findings with the clinical works.MethodsThe study mainly focuses on computer simulation in MATLAB using improved Hovorka equations in order to control the BGL in T1DM. The improved equations can be found in three subsystems namely; glucose, insulin and insulin action subsystems. CHO intakes were varied during breakfast, lunch and dinner times for three consecutive days. Simulated data are compared with the actual patients’ data from the clinical works.ResultsResult revealed that when the patient took 36.0g CHO during breakfast and lunch, the insulin administered was 0.1U/min in order to maintain the blood glucose level (BGL) in the safe range after meal; while during dinner time, 0.083U/min to 0.1 U/min of insulins were administered in order to regulate 45.0g CHO taken during meal. The basal insulin was also injected at 0.066U/min upon waking up time in the early morning. The BGL was able to remain at normal range after each meal during in-silico works compared to clinical works.ConclusionsThis study proved that the improved Hovorka equations via in-silico works can be employed to model the effect of meal disruptions on T1DM patients, as it demonstrated better control as compared to the clinical works.


2021 ◽  
Author(s):  
Morgan J. Smith ◽  
Lucia Pastor ◽  
Jeremy R.B. Newman ◽  
Patrick Concannon

<b>Signal regulatory protein SIRPγ (CD172G) is expressed on the surface of lymphocytes where it acts by engaging its ligand, CD47. <i>SIRPG,</i> which encodes SIRPγ, contains a non-synonymous coding variant, rs6043409, which is significantly associated with risk for type 1 diabetes. <i>SIRPG</i> produces multiple transcript isoforms via alternative splicing, all encoding potentially functional proteins. We show that rs6043409 alters a predicted exonic splicing enhancer, resulting in significant shifts in the distribution of <i>SIRPG</i> transcript isoforms. All of these transcript isoforms produced protein upon transient expression <i>in vitro</i>. However, CRISPR targeting of one of the alternatively spliced exons in <i>SIRPG</i> eliminated all SIRPγ expression in Jurkat T cells. These targeted cells formed fewer cell-cell conjugates with each other than with wild type Jurkat cells, expressed reduced levels of genes associated with CD47 signaling and had significantly increased levels of cell surface CD47. In primary CD4<sup>+</sup> and CD8<sup>+</sup> T cells cell surface SIRPγ levels in response to anti-CD3 stimulation varied quantitatively by rs6043409 genotype. Our results suggest that <i>SIRPG</i> is the most likely causative gene for type 1 diabetes risk in the 20p13 region and highlight the role of alternative splicing in lymphocytes in mediating the genetic risk for autoimmunity.</b>


2022 ◽  
Vol 33 (1) ◽  
pp. 10-13
Author(s):  
Peter Jennings ◽  
Martha Stewart

This month is the 100th anniversary of insulin use in humans. Peter Jennings and Martha Stewart provide an overview of how this advancement improved care for people living with diabetes January 2022 marks 100 years since insulin was first successfully used to treat diabetes in humans. Everyone with type 1 diabetes – except those who have received pancreas or islet-cell transplants – and more than half of people with type 2 diabetes use insulin to manage their diabetes. Instead of being seen as a death sentence, type 1 diabetes is now seen as a long-term condition that can be self-managed for people with access to insulin and glucose monitoring technology. However, many people living with diabetes around the world are still unable to access affordable insulin, technologies and the support needed to self-manage their diabetes.


Sign in / Sign up

Export Citation Format

Share Document