scholarly journals Screening of 5- and 6-Substituted Amiloride Libraries Identifies Dual-uPA/NHE1 Active and Single Target-Selective Inhibitors

2021 ◽  
Vol 22 (6) ◽  
pp. 2999
Author(s):  
Benjamin J. Buckley ◽  
Ashna Kumar ◽  
Ashraf Aboelela ◽  
Richard S. Bujaroski ◽  
Xiuju Li ◽  
...  

The K+-sparing diuretic amiloride shows off-target anti-cancer effects in multiple rodent models. These effects arise from the inhibition of two distinct cancer targets: the trypsin-like serine protease urokinase-type plasminogen activator (uPA), a cell-surface mediator of matrix degradation and tumor cell invasiveness, and the sodium-hydrogen exchanger isoform-1 (NHE1), a central regulator of transmembrane pH that supports carcinogenic progression. In this study, we co‑screened our library of 5- and 6-substituted amilorides against these two targets, aiming to identify single-target selective and dual-targeting inhibitors for use as complementary pharmacological probes. Closely related analogs substituted at the 6-position with pyrimidines were identified as dual-targeting (pyrimidine 24 uPA IC50 = 175 nM, NHE1 IC50 = 266 nM, uPA selectivity ratio = 1.5) and uPA-selective (methoxypyrimidine 26 uPA IC50 = 86 nM, NHE1 IC50 = 12,290 nM, uPA selectivity ratio = 143) inhibitors, while high NHE1 potency and selectivity was seen with 5-morpholino (29 NHE1 IC50 = 129 nM, uPA IC50 = 10,949 nM; NHE1 selectivity ratio = 85) and 5-(1,4-oxazepine) (30 NHE1 IC50 = 85 nM, uPA IC50 = 5,715 nM; NHE1 selectivity ratio = 67) analogs. Together, these amilorides comprise a new toolkit of chemotype-matched, non-cytotoxic probes for dissecting the pharmacological effects of selective uPA and NHE1 inhibition versus dual-uPA/NHE1 inhibition.

2004 ◽  
Vol 91 (02) ◽  
pp. 403-411 ◽  
Author(s):  
Maria Santovito ◽  
Thomas Frandsen ◽  
Giovanni Aletti ◽  
Augusto Ferrari ◽  
Andrea Lissoni ◽  
...  

SummaryThe urokinase-type plasminogen activator receptor (uPAR) is involved in cell migration and tissue remodelling, as a receptor for pro-uPA, as a cell adhesion component, and in a soluble form as a chemoattractant. We have analyzed the presence and the molecular forms of uPAR and uPAR-fragments in urine of ovarian cancer patients in comparison with tumour tissue, ascites, and serum. Carcinoma tissue contained high levels of uPAR, but more abundantly the D2D3-fragment. Ascitic fluid contained similar ratio’s of suPAR fragments as corresponding tumour tissue, but serum only contained intact suPAR. Interestingly, urine contained predominantly the uPAR-fragments D1 and D2D3, and the pattern of these fragments was different in cancer patients as compared to healthy individuals. To confirm the hypothesis that circulating and urinary suPAR and suPAR-fragments originate from the tumour tissue, the presence of human suPAR (fragments) was analyzed in mice xenografted with human tumours. Indeed, high levels of urinary D1 fragment were found in mice carrying a tumour displaying cleaved uPAR on the cell surface, but little or no D1 was found in the urine from mice carrying a tumour with full-length uPAR. Mouse serum contained only intact suPAR. Our data demonstrate that the enhanced levels of suPAR fragments in the urine of cancer patients is likely to originate from uPAR expressed in the tumour tissue. Considering the biological activities that uPAR fragments display, the level and typing of uPAR fragments in urine might therefore be clinically more relevant than the plain serum uPAR content.


2021 ◽  
Vol 22 (8) ◽  
pp. 4111
Author(s):  
Anna Li Santi ◽  
Filomena Napolitano ◽  
Nunzia Montuori ◽  
Pia Ragno

Proteolysis is a key event in several biological processes; proteolysis must be tightly controlled because its improper activation leads to dramatic consequences. Deregulation of proteolytic activity characterizes many pathological conditions, including cancer. The plasminogen activation (PA) system plays a key role in cancer; it includes the serine-protease urokinase-type plasminogen activator (uPA). uPA binds to a specific cellular receptor (uPAR), which concentrates proteolytic activity at the cell surface, thus supporting cell migration. However, a large body of evidence clearly showed uPAR involvement in the biology of cancer cell independently of the proteolytic activity of its ligand. In this review we will first describe this multifunctional molecule and then we will discuss how uPAR can sustain most of cancer hallmarks, which represent the biological capabilities acquired during the multistep cancer development. Finally, we will illustrate the main data available in the literature on uPAR as a cancer biomarker and a molecular target in anti-cancer therapy.


2001 ◽  
Vol 120 (5) ◽  
pp. A599-A600 ◽  
Author(s):  
L HERSZENYI ◽  
F FARINATI ◽  
G ISTVAN ◽  
M PAOLI ◽  
G ROVERONI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document