scholarly journals In Ovarian Cancer Multicellular Spheroids, Platelet Releasate Promotes Growth, Expansion of ALDH+ and CD133+ Cancer Stem Cells, and Protection against the Cytotoxic Effects of Cisplatin, Carboplatin and Paclitaxel

2021 ◽  
Vol 22 (6) ◽  
pp. 3019
Author(s):  
Naike Casagrande ◽  
Cinzia Borghese ◽  
Francesco Agostini ◽  
Cristina Durante ◽  
Mario Mazzucato ◽  
...  

A high platelet count is associated with a poor prognosis in ovarian cancer (OvCa). Despite good clinical responses with platinating agents in combination with taxanes, numerous OvCa patients relapse due to chemotherapy resistance. Here, we report that treatment of OvCa cells A2780, OVCAR5 and MDAH with releasate from activated platelets (PR) promoted multicellular tumor spheroid (MCTS) formation. These OvCa-MCTSs had increased percentages of CD133+ and aldehyde dehydrogenase (ALDH)+ cells, bona fide markers of OvCa cancer stem cells (CSCs). PR increased OVCAR5- and MDAH-MCTS viability and decreased the cytotoxic and pro-apoptotic effects of paclitaxel, cisplatin and carboplatin. PR increased the volume of spontaneously formed OVCAR8-MCTSs and counteracted their size reduction due to cisplatin, carboplatin and paclitaxel treatment. PR promoted the survival of ALDH+ and CD133+ OvCa cells during cisplatin, carboplatin and paclitaxel treatment. In conclusion, molecules and growth factors released by activated platelets (EGF, PDGF, TGF-β, IGF and CCL5) may protect tumor cells from chemotherapy by promoting the expansion of ALDH+ and CD133+ OvCa-CSCs, favoring drug resistance and tumor relapse.

2013 ◽  
Vol 2 (6) ◽  
pp. 987-987 ◽  
Author(s):  
Vinicius Craveiro ◽  
Yang Yang-Hartwich ◽  
Jennie C. Holmberg ◽  
Natalia J. Sumi ◽  
John Pizzonia ◽  
...  

Cancers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 907 ◽  
Author(s):  
Takeshi Motohara ◽  
Hidetaka Katabuchi

Epithelial ovarian cancer is a highly lethal gynecological malignancy that is characterized by the early development of disseminated metastasis. Though ovarian cancer has been generally considered to preferentially metastasize via direct transcoelomic dissemination instead of the hematogenous route, emerging evidence has indicated that the hematogenous spread of cancer cells plays a larger role in ovarian cancer metastasis than previously thought. Considering the distinctive biology of ovarian cancer, an in-depth understanding of the biological and molecular mechanisms that drive metastasis is critical for developing effective therapeutic strategies against this fatal disease. The recent “cancer stem cell theory” postulates that cancer stem cells are principally responsible for tumor initiation, metastasis, and chemotherapy resistance. Even though the hallmarks of ovarian cancer stem cells have not yet been completely elucidated, metastasized ovarian cancer cells, which have a high degree of chemoresistance, seem to manifest cancer stem cell properties and play a key role during relapse at metastatic sites. Herein, we review our current understanding of the cell-biological mechanisms that regulate ovarian cancer metastasis and chemotherapy resistance, with a pivotal focus on ovarian cancer stem cells, and discuss the potential clinical implications of evolving cancer stem cell research and resultant novel therapeutic approaches.


2013 ◽  
Vol 2 (6) ◽  
pp. 751-762 ◽  
Author(s):  
Vinicius Craveiro ◽  
Yang Yang‐Hartwich ◽  
Jennie C. Holmberg ◽  
Natalia J. Sumi ◽  
John Pizzonia ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 918
Author(s):  
Heejin Lee ◽  
Oh-Bin Kwon ◽  
Jae-Eon Lee ◽  
Yong-Hyun Jeon ◽  
Dong-Seok Lee ◽  
...  

The overall five-year survival rate for late-stage patients of ovarian cancer is below 29% due to disease recurrence and drug resistance. Cancer stem cells (CSCs) are known as a major contributor to drug resistance and recurrence. Accordingly, therapies targeting ovarian CSCs are needed to overcome the limitations of present treatments. This study evaluated the effect of trimebutine maleate (TM) targeting ovarian CSCs, using A2780-SP cells acquired by a sphere culture of A2780 epithelial ovarian cancer cells. TM is indicated as a gastrointestinal motility modulator and is known to as a peripheral opioid receptor agonist and a blocker for various channels. The GI50 of TM was approximately 0.4 µM in A2780-SP cells but over 100 µM in A2780 cells, demonstrating CSCs specific growth inhibition. TM induced G0/G1 arrest and increased the AV+/PI+ dead cell population in the A2780-SP samples. Furthermore, TM treatment significantly reduced tumor growth in A2780-SP xenograft mice. Voltage gated calcium channels (VGCC) and calcium-activated potassium channels (BKCa) were overexpressed on ovarian CSCs and targeted by TM; inhibition of both channels reduced A2780-SP cells viability. TM reduced stemness-related protein expression; this tendency was reproduced by the simultaneous inhibition of VGCC and BKCa compared to single channel inhibition. In addition, TM suppressed the Wnt/β-catenin, Notch, and Hedgehog pathways which contribute to many CSCs characteristics. Specifically, further suppression of the Wnt/β-catenin pathway by simultaneous inhibition of BKCa and VGCC is necessary for the effective and selective action of TM. Taken together, TM is a potential therapeutic drug for preventing ovarian cancer recurrence and drug resistance.


2020 ◽  
Vol 10 ◽  
Author(s):  
Nastassja Terraneo ◽  
Francis Jacob ◽  
Anna Dubrovska ◽  
Jürgen Grünberg

Author(s):  
Nuzhat Ahmed ◽  
Ruth Escalona ◽  
Elif Kadife ◽  
Dilys Leung ◽  
George Kannourakis

2019 ◽  
Vol 39 (3) ◽  
Author(s):  
Wenxiang Wang ◽  
Yuxia Gao ◽  
Jing Hai ◽  
Jing Yang ◽  
Shufeng Duan

Abstract Increasing evidence shows that cancer stem cells are responsible for drug resistance and relapse of tumors. In breast cancer, human epidermal growth factor receptor 2 (HER2) induces Herceptin resistance by inducing cancer stem cells. In the present study, we explored the effect of HER2 on cancer stem cells induction and drug sensitivity of ovarian cancer cell lines. First, we found that HER2 overexpression (HER2 OE) induced, while HER2 knockdown (HER2 KD) decreased CD44+/CD24− population. Consistently, HER2 expression was closely correlated with the sphere formation efficiency (SFE) of ovarian cancer cells. Second, we found that NFκB inhibition by specific inhibitor JSH23 or siRNA targetting subunit p65 dramatically impaired the induction of ovarian cancer stem cells by HER2, indicating that NFκB mediated HER2-induced ovarian cancer stem cells. Third, we found that HER2 KD significantly attenuated the tumorigenicity of ovarian cancer cells. Further, we found that HER2 inhibition increased drastically the sensitivity of ovarian cancer cells to doxorubicin (DOX) or paclitaxel (PTX). Finally, we examined the correlation between HER2 status and stem cell-related genes expression in human ovarian tumor tissues, and found that expressions of OCT4, COX2, and Nanog were higher in HER2 positive tumors than in HER2 negative tumors. Consistently, the 5-year tumor-free survival rate of HER2 positive patients was dramatically lower than HER2 negative patients. Taken together, our data indicate that HER2 decreases drug sensitivity of ovarian cancer cells via inducing stem cell-like property.


Sign in / Sign up

Export Citation Format

Share Document