scholarly journals DArTseq-Based High-Throughput SilicoDArT and SNP Markers Applied for Association Mapping of Genes Related to Maize Morphology

2021 ◽  
Vol 22 (11) ◽  
pp. 5840
Author(s):  
Agnieszka Tomkowiak ◽  
Jan Bocianowski ◽  
Julia Spychała ◽  
Joanna Grynia ◽  
Aleksandra Sobiech ◽  
...  

Today, agricultural productivity is essential to meet the needs of a growing population, and is also a key tool in coping with climate change. Innovative plant breeding technologies such as molecular markers, phenotyping, genotyping, the CRISPR/Cas method and next-generation sequencing can help agriculture meet the challenges of the 21st century more effectively. Therefore, the aim of the research was to identify single-nucleotide polymorphisms (SNPs) and SilicoDArT markers related to select morphological features determining the yield in maize. The plant material consisted of ninety-four inbred lines of maize of various origins. These lines were phenotyped under field conditions. A total of 14 morphological features was analyzed. The DArTseq method was chosen for genotyping because this technique reduces the complexity of the genome by restriction enzyme digestion. Subsequently, short fragment sequencing was used. The choice of a combination of restrictases allowed the isolation of highly informative low copy fragments of the genome. Thanks to this method, 90% of the obtained DArTseq markers are complementary to the unique sequences of the genome. All the observed features were normally distributed. Analysis of variance indicated that the main effect of lines was statistically significant (p < 0.001) for all 14 traits of study. Thanks to the DArTseq analysis with the use of next-generation sequencing (NGS) in the studied plant material, it was possible to identify 49,911 polymorphisms, of which 33,452 are SilicoDArT markers and the remaining 16,459 are SNP markers. Among those mentioned, two markers associated with four analyzed traits deserved special attention: SNP (4578734) and SilicoDArT (4778900). SNP marker 4578734 was associated with the following features: anthocyanin coloration of cob glumes, number of days from sowing to anthesis, number of days from sowing to silk emergence and anthocyanin coloration of internodes. SilicoDArT marker 4778900 was associated with the following features: number of days from sowing to anthesis, number of days from sowing to silk emergence, tassel: angle between the axis and lateral branches and plant height. Sequences with a length of 71 bp were used for physical mapping. The BLAST and EnsemblPlants databases were searched against the maize genome to identify the positions of both markers. Marker 4578734 was localized on chromosome 7, the closest gene was Zm00001d022467, approximately 55 Kb apart, encoding anthocyanidin 3-O-glucosyltransferase. Marker 4778900 was located on chromosome 7, at a distance of 45 Kb from the gene Zm00001d045261 encoding starch synthase I. The latter observation indicated that these flanking SilicoDArT and SNP markers were not in a state of linkage disequilibrium.

2014 ◽  
Vol 12 (S1) ◽  
pp. S83-S86 ◽  
Author(s):  
Yul-Kyun Ahn ◽  
Swati Tripathi ◽  
Young-Il Cho ◽  
Jeong-Ho Kim ◽  
Hye-Eun Lee ◽  
...  

Next-generation sequencing technique has been known as a useful tool for de novo transcriptome assembly, functional annotation of genes and identification of molecular markers. This study was carried out to mine molecular markers from de novo assembled transcriptomes of four chilli pepper varieties, the highly pungent ‘Saengryeg 211’ and non-pungent ‘Saengryeg 213’ and variably pigmented ‘Mandarin’ and ‘Blackcluster’. Pyrosequencing of the complementary DNA library resulted in 361,671, 274,269, 279,221, and 316,357 raw reads, which were assembled in 23,607, 19,894, 18,340 and 20,357 contigs, for the four varieties, respectively. Detailed sequence variant analysis identified numerous potential single-nucleotide polymorphisms (SNPs) and simple sequence repeats (SSRs) for all the varieties for which the primers were designed. The transcriptome information and SNP/SSR markers generated in this study provide valuable resources for high-density molecular genetic mapping in chilli pepper and Quantitative trait loci analysis related to fruit qualities. These markers for pepper will be highly valuable for marker-assisted breeding and other genetic studies.


2017 ◽  
Author(s):  
Claire Marchal ◽  
Takayo Sasaki ◽  
Daniel Vera ◽  
Korey Wilson ◽  
Jiao Sima ◽  
...  

ABSTRACTCycling cells duplicate their DNA content during S phase, following a defined program called replication timing (RT). Early and late replicating regions differ in terms of mutation rates, transcriptional activity, chromatin marks and sub-nuclear position. Moreover, RT is regulated during development and is altered in disease. Exploring mechanisms linking RT to other cellular processes in normal and diseased cells will be facilitated by rapid and robust methods with which to measure RT genome wide. Here, we describe a rapid, robust and relatively inexpensive protocol to analyze genome-wide RT by next-generation sequencing (NGS). This protocol yields highly reproducible results across laboratories and platforms. We also provide computational pipelines for analysis, parsing phased genomes using single nucleotide polymorphisms (SNP) for analyzing RT allelic asynchrony, and for direct comparison to Repli-chip data obtained by analyzing nascent DNA by microarrays.


2020 ◽  
Vol 79 (2) ◽  
pp. 105-113
Author(s):  
Abdul Bari Muneera Parveen ◽  
Divya Lakshmanan ◽  
Modhumita Ghosh Dasgupta

The advent of next-generation sequencing has facilitated large-scale discovery and mapping of genomic variants for high-throughput genotyping. Several research groups working in tree species are presently employing next generation sequencing (NGS) platforms for marker discovery, since it is a cost effective and time saving strategy. However, most trees lack a chromosome level genome map and validation of variants for downstream application becomes obligatory. The cost associated with identifying potential variants from the enormous amount of sequence data is a major limitation. In the present study, high resolution melting (HRM) analysis was optimized for rapid validation of single nucleotide polymorphisms (SNPs), insertions or deletions (InDels) and simple sequence repeats (SSRs) predicted from exome sequencing of parents and hybrids of Eucalyptus tereticornis Sm. ? Eucalyptus grandis Hill ex Maiden generated from controlled hybridization. The cost per data point was less than 0.5 USD, providing great flexibility in terms of cost and sensitivity, when compared to other validation methods. The sensitivity of this technology in variant detection can be extended to other applications including Bar-HRM for species authentication and TILLING for detection of mutants.


2017 ◽  
Vol 17 (2) ◽  
pp. 57
Author(s):  
I Made Tasma ◽  
Dani Satyawan ◽  
Habib Rijzaani ◽  
Ida Rosdianti ◽  
Puji Lestari ◽  
...  

<p class="abstrakInggris"><span>Indonesian cacao productivity is still low mainly due to the lack availability of superior cacao planting materials. A new breeding method is necessary to expedite cacao yield improvement programs. To date, no study has yet been done to characterize Indonesian cacao varieties at the whole genome level. The objective of this study was to characterize genomic variation of five superior Indonesian cacao varieties using next-generation sequencing. Genetic materials used were five Indonesian cacao varieties, i.e. ICCRI2, ICCRI3, ICCRI4, SUL2 and ICS13. Genome sequences were mapped to the cacao reference genome sequence of Criollo variety. Sequence alignment and genomic variation discovery were done using Bowtie2 and mpileup software of Samtools, respectively. A total of 2,326,088 single nucleotide polymorphisms (SNPs) and 362,081 insertions and deletions (Indels) were obtained from this study. In average, a DNA variant was identified in every 121 nucleotides of the genome sequence. Most of the DNA variants were located outside the genes. Only 347,907 SNPs and Indels (13.18%) were located within protein coding region (exon).  Among the DNA variations within exon, 188,949 SNPs caused missense mutation and 1,535 SNPs induced nonsense mutation.  Unique gene-based SNPs were also discovered from this study that can be used as fingerprints for the particular cacao variety. The DNA variants obtained were excellent DNA marker resources to support cacao breeding programs. The SNPs discovered are useful as materials for genome-wide SNP chip development to be used for gene and QTL tagging of important traits for expediting national cacao breeding program.</span></p>


2016 ◽  
Vol 8 (4) ◽  
pp. 415-418 ◽  
Author(s):  
José Gregorio Martínez ◽  
Susana Josefina Caballero-Gaitán ◽  
Diana Sánchez-Bernal ◽  
Enedina Nogueira de Assunção ◽  
Spartaco Astolfi-Filho ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document