scholarly journals Alleviation of LPS-Induced Inflammation and Septic Shock by Lactiplantibacillus plantarum K8 Lysates

2021 ◽  
Vol 22 (11) ◽  
pp. 5921
Author(s):  
Gayoung Kim ◽  
Kyeong-Hun Choi ◽  
Hangeun Kim ◽  
Dae-Kyun Chung

We previously showed that Lactiplantibacillus plantarum K8 and its cell wall components have immunoregulatory effects. In this study, we demonstrate that pre-treatment of L. plantarum K8 lysates reduced LPS-induced TNF-α production in THP-1 cells by down-regulating the early signals of mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB). The down-regulation of signals may be caused by the induction of negative regulators involved in toll-like receptor (TLR)-mediated signaling. However, co-treatment with high concentrations of L. plantarum K8 lysates and lipopolysaccharide (LPS) activated the late signaling of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and NF-κB pathways and resulted in the induction of absent in melanoma 2 (AIM2) inflammasome-mediated interleukin (IL)-1β secretion. Intraperitoneal injection of L. plantarum K8 lysates in LPS-induced endotoxin shock mice alleviated mortality and reduced serum tumor-necrosis factor (TNF)-α, IL-1β, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels. In addition, the mRNA levels of TNF-α, IL-1β, and IL-6 decreased in livers from mice injected with L. plantarum K8 followed by LPS. Hematoxylin and eosin (H&E) staining of the liver showed that the cell size was enlarged by LPS injection and slightly reduced by L. plantarum K8 lysate pre-injection followed by LPS injection. Macrophage infiltration of the liver also decreased in response to the combination injection compared with mice injected with only LPS. Taken together, our results show that although L. plantarum K8 lysates differentially regulated the production of LPS-induced inflammatory cytokines in THP-1 cells, the lysates inhibited overall inflammation in mice. Thus, this study suggests that L. plantarum K8 lysates could be developed as a substance that modulates immune homeostasis by regulating inflammation.

2018 ◽  
Vol 6 (4) ◽  
pp. 362-378
Author(s):  
Yanyan Xu ◽  
Hanan Slimani

Neisseria meningitidis is a Gram-negative bacterium emerging the leading cause of bacterial meningitis in children and young adult wide world. The host innate immune response against meningitis is largely unknown. In this study, we show that N.meningitidis robustly activates mRNA and protein expression of tumor necrosis factor (TNF-α) and interleukin (IL-6) in murine bone marrow-derived PMN. Toll-like receptor (TLR-2) and myeloid differentiation primary response gene 88 (MyD88), N.meningitidis also activates the mitogen-activated protein kinase (MAPKs; c-Jun N-terminal kinase (JNK), ERK1/2 and p38 MAPK) pathway. N.meningitidis-induced TNF-α and IL-6 production was dependent on JNK activation. The intracellular reactive oxygen species (ROS), NADPH oxidase-2, and nuclear factor-κB are required for N.meningitides-induced proinflammatory cytokine generation in PMN. Together, we have demonstrated that N.meningitidis-induced activation of host proinflammatory cytokines is mediated through TLR2-dependent JNK signaling pathways.


2007 ◽  
Vol 86 (2) ◽  
pp. 186-191 ◽  
Author(s):  
S. Ogata ◽  
Y. Kubota ◽  
T. Yamashiro ◽  
H. Takeuchi ◽  
T. Ninomiya ◽  
...  

Interleukin-1α(IL-1α) stimulates the production of prostaglandin E2 (PGE2) in odontogenic keratocyst fibroblasts. However, the signaling pathways remain obscure. In this study, we investigated IL-1αsignaling pathways that regulate cyclooxygenase-2 (COX-2) expression in odontogenic keratocyst fibroblasts. IL-1αincreased the expression of COX-2 mRNA and protein, and PGE2 secretion in the fibroblasts. IL-1αincreased the phosphorylation of extracellular signal-regulated protein kinase-1/2 (ERK1/2), p38 mitogen-activated protein kinase (MAPK), and c-Jun N-terminal kinase (JNK). PD-98059, SB-203580, SP-600125, and PDTC—which are inhibitors of ERK1/2, p38, JNK, and nuclear factor-κB (NF-κB), respectively—attenuated the IL-1α-induced COX-2 mRNA expression and activated protein kinase C PGE2 secretion. IL-1α(PKC), and PKC inhibitor staurosporine inhibited IL-1α-induced phosphorylation of ERK1/2, p38, and JNK, and decreased IL-1α-induced COX-2 mRNA expression. Thus, in odontogenic keratocyst fibroblasts, IL-1αmay stimulate COX-2 expression both through the PKC-dependent activation of ERK1/2, p38, and JNK signaling pathways, and through the NF-κB cascade.


2001 ◽  
Vol 356 (2) ◽  
pp. 473-480 ◽  
Author(s):  
Kathryn M. SCHUBERT ◽  
Vincent DURONIO

Alterations in the expression of various Bcl-2 family members may act as one means by which a cell's survival may be regulated. The mechanism by which cytokines regulate expression of Bcl-2 family members was examined in the haemopoietic cell line TF-1. Cytokine-induced Mcl-1 protein expression was shown to be controlled through a pathway dependent upon phosphatidylinositol 3-kinase (PI 3-kinase). The cytokine-induced increase in mRNA transcription was not dependent upon PI 3-kinase, thus dissociating the immediate-early transcription factors responsible for Mcl-1 transcription from the PI 3-kinase signalling pathway. In contrast, Mcl-1 mRNA levels were dependent upon MEK [mitogen-activated protein kinase (MAPK)/extracellular-signal-regulated protein kinase kinase] activation, suggesting a role for the Ras/MEK/MAPK pathway in Mcl-1 transcription. Activation of PI 3-kinase was shown to be necessary to stimulate Mcl-1 protein translation. This was not due to any effect on prolonging the half-life of the protein. Finally, the lipid second messenger ceramide was shown to cause a reduction in Mcl-1 protein translation, probably via its ability to inhibit protein kinase B activation, providing further clues regarding the death-inducing effect of this lipid.


Blood ◽  
2001 ◽  
Vol 98 (7) ◽  
pp. 2175-2182 ◽  
Author(s):  
Amaya Puig-Kröger ◽  
Miguel Relloso ◽  
Oskar Fernández-Capetillo ◽  
Ana Zubiaga ◽  
Augusto Silva ◽  
...  

Dendritic cells (DC) are highly specialized antigen-presenting cells that on activation by inflammatory stimuli (eg, tumor necrosis factor α [TNF-α] and interleukin-1β [IL-1β]) or infectious agents (eg, lipopolysaccharide [LPS]), mature and migrate into lymphoid organs. During maturation, DC acquire the capacity to prime and polarize resting naive T lymphocytes. Maturation of monocyte-derived DC (MDDC) is inhibited by the p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580. This study found that in the presence of the mitogen-activated protein kinase kinase 1–extracellular signal-regulated kinase (ERK) inhibitors PD98059 or U0126, TNF-α– and LPS-induced phenotypic and functional maturation is enhanced. ERK pathway inhibitors increased expression of major histocompatibility complex and costimulatory molecules; loss of mannose-receptor–mediated endocytic activity; nuclear factor-κB DNA-binding activity; release of IL-12 p40; and allogeneic T-cell proliferation induced by LPS or TNF-α. Moreover, PD98059 and U0126 enhanced LPS-triggered production of IL-12 p70. In agreement with the effect of ERK inhibitors, maturation of MDDC was delayed in the presence of serum, an effect that was reversed by U0126. These results indicate that the ERK and p38 MAPK signaling pathways differentially regulate maturation of MDDC and suggest that their relative levels of activation might modulate the initial commitment of naive T-helper (Th) cells toward Th1 or Th2 subsets. The findings also suggest that maturation of MDDC might be pharmacologically modified by altering the relative levels of activation of both intracellular signaling routes.


2004 ◽  
Vol 24 (5) ◽  
pp. 1823-1835 ◽  
Author(s):  
Ganesh R. Panta ◽  
Swayamjot Kaur ◽  
Lakita G. Cavin ◽  
Maria L. Cortés ◽  
Frank Mercurio ◽  
...  

ABSTRACT We have identified a novel pathway of ataxia telangiectasia mutated (ATM) and DNA-dependent protein kinase (DNA-PK) signaling that results in nuclear factor κB (NF-κB) activation and chemoresistance in response to DNA damage. We show that the anthracycline doxorubicin (DOX) and its congener N-benzyladriamycin (AD 288) selectively activate ATM and DNA-PK, respectively. Both ATM and DNA-PK promote sequential activation of the mitogen-activated protein kinase (MAPK)/p90 rsk signaling cascade in a p53-independent fashion. In turn, p90 rsk interacts with the IκB kinase 2 (IKK-2) catalytic subunit of IKK, thereby inducing NF-κB activity and cell survival. Collectively, our findings suggest that distinct members of the phosphatidylinositol kinase family activate a common prosurvival MAPK/IKK/NF-κB pathway that opposes the apoptotic response following DNA damage.


2011 ◽  
Vol 300 (6) ◽  
pp. F1410-F1421 ◽  
Author(s):  
Frank Y. Ma ◽  
Greg H. Tesch ◽  
Elyce Ozols ◽  
Min Xie ◽  
Michael D. Schneider ◽  
...  

Activation of c-Jun amino kinase (JNK), p38 mitogen-activated protein kinase (MAPK), and the transcription factor nuclear factor-κB (NF-κB) drives renal inflammation and fibrosis. However, the upstream MAP kinase kinase kinase (MAP3K) enzyme(s) that activate these pathways in kidney disease are unknown. We determined the role of one candidate MAP3K enzyme, transforming growth factor-β1-activated kinase-1 (TAK1/ MAP3K7), in activation of JNK, p38, and NF-κB in the obstructed kidney using conditional gene deletion in adult mice, and assessed the potential protective effect of TAK1 deletion on renal pathology. TAK1 deletion in cultured tubular epithelial cells substantially inhibited IL-1 and TNF-α-induced JNK, p38, and NF-κB signaling and the proinflammatory response. Map3k7 f/f Cre-ER TM mice (in which tamoxifen induces global TAK1 deletion) and control Map3k7 f/f mice were given tamoxifen at the time of unilateral ureteric obstruction (UUO) and then killed 2, 4, or 5 days later. Tamoxifen-treated control Map3k7 f/f mice showed the expected activation of JNK, p38, and NF-κB signaling on days 2, 4, and 5, with macrophage infiltration and upregulation of mRNA levels of proinflammatory molecules (IL-1α, TNF-α, NOS2, and CCL2). Control Map3k7 f/f mice also showed interstitial myofibroblast accumulation and collagen deposition in the obstructed kidney. Tamoxifen treatment of Map3k7 f/f Cre-ER TM mice caused a 60% reduction in renal TAK1 expression on day 4 and >80% on day 5 UUO. Coincident with TAK1 deletion, activation of JNK, p38, and NF-κB signaling was markedly suppressed on days 4 to 5 UUO, which halted renal macrophage accumulation and expression of proinflammatory molecules. TAK1 deletion also halted the development of renal fibrosis in terms of myofibroblast accumulation, collagen deposition, and expression of profibrotic molecules. In conclusion, these studies establish TAK1 as a major upstream activator of JNK, p38, and NF-κB signaling in the obstructed kidney, and they define a pathologic role for TAK1 in renal inflammation and fibrosis.


Sign in / Sign up

Export Citation Format

Share Document