scholarly journals Genome-Wide Identification, Diversification, and Expression Analysis of Lectin Receptor-Like Kinase (LecRLK) Gene Family in Cucumber under Biotic Stress

2021 ◽  
Vol 22 (12) ◽  
pp. 6585
Author(s):  
Muhammad Salman Haider ◽  
Savitha De Britto ◽  
Geetha Nagaraj ◽  
Bhavya Gurulingaiah ◽  
Ravikant Shekhar ◽  
...  

Members of the lectin receptor-like kinase (LecRLKs) family play a vital role in innate plant immunity. Few members of the LecRLKs family have been characterized in rice and Arabidopsis, respectively. However, little literature is available about LecRLKs and their role against fungal infection in cucumber. In this study, 60 putative cucumber LecRLK (CsLecRLK) proteins were identified using genome-wide analysis and further characterized into L-type LecRLKs (24) and G-type LecRLKs (36) based on domain composition and phylogenetic analysis. These proteins were allocated to seven cucumber chromosomes and found to be involved in the expansion of the CsLecRLK gene family. Subcellular localization of CsaLecRLK9 and CsaLecRLK12 showed green fluorescence signals in the plasma membrane of leaves. The transcriptional profiling of CsLecRLK genes showed that L-type LecRLKs exhibited functional redundancy as compared to G-type LecRLKs. The qRT-PCR results indicated that both L- and G-type LecRLKs showed significant response against plant growth-promoting fungi (PGPF- Trichoderma harzianum Rifai), powdery mildew pathogen (PPM—Golovinomyces orontii (Castagne) V.P. Heluta), and combined (PGPF+PPM) treatments. The findings of this study contribute to a better understanding of the role of cucumber CsLecRLK genes in response to PGPF, PPM, and PGPF+PPM treatments and lay the basis for the characterization of this important functional gene family.

2019 ◽  
Author(s):  
Mingzhao Zhu ◽  
Yu Ning ◽  
Longxiang Yan ◽  
Wenxue Cao ◽  
Congcong Kong ◽  
...  

Abstract Background: cytokinins have important functions in regulating plant growth and response to abiotic stress. cytokinin family genes have been described in several plant species, but a comprehensive analysis of the cytokinin family genes in Brassica oleracea has not been reported to date, especially their roles in dealing with the invasion of P. brassicae. Results: Cytokinins are a class of phytohormones that promote cell division and differentiation and are thought to affect plant immunity to multiple pathogens. To reveal the mechanisms of the Brassica oleracea cytokinin family genes in response to clubroot disease, a total of 36 cytokinin genes were identified using a genome-wide search method. Phylogenetic analysis classified these genes into three groups. They were distributed unevenly across nine chromosomes in B. oleracea, and 15 of them did not contain introns. The results of colinear analysis showed that each cytokinin gene in the B. oleracea genome had at least one homologous gene in the Arabidopsis genome. A cis-element analysis indicated that these genes possessed several stress response cis-elements. The heatmap of the cytokinin gene family showed that these genes were expressed in various tissues and organs. Five and eight genes were up- and downregulated, respectively, in the susceptible material after inoculation. In addition, two and one genes were up- and downregulated, respectively, in resistant material. This may indicate that these cytokinin genes play important roles in the host plant response to clubroot disease. In addition, the results provide insights for better understanding the role of cytokinin in the B. oleracea–P. brassicae interaction. Conclusions: Our results are helpful to elucidate the role of cytokinin family genes in cabbage response to infection by P. brassicae, and lay a foundation for further study on the function of these genes. Keywords: Brassica oleracea, genome-wide, cytokinin family genes, clubroot


Horticulturae ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 441
Author(s):  
Muhammad Moaaz Ali ◽  
Shariq Mahmood Alam ◽  
Raheel Anwar ◽  
Sajid Ali ◽  
Meng Shi ◽  
...  

Aluminum-activated malate transporters (ALMTs) have multiple potential roles in plant metabolism such as regulation of organic acids in fruits, movement of guard cells and inducing tolerance against aluminum stress. However, the systematic characterization of ALMT genes in loquat is yet to be performed. In the current study, 24 putative ALMT genes were identified in the genome of Eriobotrya japonica Lindl. To further investigate the role of those ALMT genes, comprehensive bioinformatics and expression analysis were performed. In bioinformatics analysis, the physiochemical properties, conserved domains, gene structure, conserved motif, phylogenetic and syntenic analysis of EjALMT genes were conducted. The result revealed that the ALMT superfamily domain was conserved in all EjALMT proteins. EjALMT proteins were predicted to be localized in the plasma membrane. Genomic structural and motif analysis showed that the exon and motif number of each EjALMT gene ranged dramatically, from 5 to 7, and 6 to 10, respectively. Syntenic analysis indicated that the segmental or whole-genome duplication played a vital role in extension of the EjALMT gene family. The Ka and Ks values of duplicated genes depicted that EjALMT genes have undergone a strong purifying selection. Furthermore, the expression analysis of EjALMT genes was performed in the root, mature leaf, stem, full-bloom flower and ripened fruit of loquat. Some genes were expressed differentially in examined loquat tissues, signifying their differential role in plant growth and development. This study provides the first genome-wide identification, characterization, and relative expression of the ALMT gene family in loquat and provides the foundation for further functional analysis.


2020 ◽  
Vol 39 (4) ◽  
Author(s):  
Xuming Luo ◽  
Wei Wu ◽  
Yingbo Liang ◽  
Ning Xu ◽  
Zongyi Wang ◽  
...  

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5816 ◽  
Author(s):  
Lidong Hao ◽  
Xiuli Qiao

As one of the non-selective cation channel gene families, the cyclic nucleotide-gated channel (CNGC) gene family plays a vital role in plant physiological processes that are related to signal pathways, plant development, and environmental stresses. However, genome-wide identification and analysis of the CNGC gene family in maize has not yet been undertaken. In the present study, twelve ZmCNGC genes were identified in the maize genome, which were unevenly distributed on chromosomes 1, 2, 4, 5, 6, 7, and 8. They were classified into five major groups: Groups I, II, III, IVa, and IVb. Phylogenetic analysis showed that gramineous plant CNGC genes expanded unequally during evolution. Group IV CNGC genes emerged first, whereas Groups I and II appeared later. Prediction analysis of cis-acting regulatory elements showed that 137 putative cis-elements were related to hormone-response, abiotic stress, and organ development. Furthermore, 120 protein pairs were predicted to interact with the 12 ZmCNGC proteins and other maize proteins. The expression profiles of the ZmCNGC genes were expressed in tissue-specific patterns. These results provide important information that will increase our understanding of the CNGC gene family in maize and other plants.


2009 ◽  
Vol 8 (8) ◽  
pp. 1174-1183 ◽  
Author(s):  
Adnane Sellam ◽  
Faïza Tebbji ◽  
André Nantel

ABSTRACT The Ndt80p transcription factor modulates azole tolerance in Candida albicans by controlling the expression of the gene for the drug efflux pump Cdr1p. To date, the contribution of this transcriptional modulator to drug tolerance is not yet well understood. Here, we investigate the role of Ndt80p in mediating fluconazole tolerance by determining its genome-wide occupancy using chromatin immunoprecipitation coupled to high-density tiling arrays. Ndt80p was found to bind a large number of gene promoters with diverse biological functions. Gene ontology analysis of these Ndt80p targets revealed a significant enrichment in gene products related to the cell wall, carbohydrate metabolism, stress responses, hyphal development, multidrug transport, and the cell cycle. Ndt80p was found on the promoters of ergosterol biosynthesis genes, including on the azole target Erg11p. Additionally, expression profiling was used to identify fluconazole-responsive genes that require Ndt80p for their proper expression. We found that Ndt80p is crucial for the expression of numerous fluconazole-responsive genes, especially genes involved in ergosterol metabolism. Therefore, by combining genome-wide location and transcriptional profiling, we have characterized the Ndt80p fluconazole-dependent regulon and demonstrated the key role of this global transcriptional regulator in modulating sterol metabolism and drug resistance in C. albicans.


2020 ◽  
Author(s):  
Ronald R. Tapia ◽  
Christopher R. Barbey ◽  
Saket Chandra ◽  
Kevin M. Folta ◽  
Vance M. Whitaker ◽  
...  

AbstractPowdery mildew (PM) caused by Podosphaera aphanis is a major fungal disease in cultivated strawberry. Mildew Resistance Locus O (MLO) is a gene family described for having conserved seven-transmembrane domains. Induced loss-of-function in specific MLO genes can confer durable and broad resistance against PM pathogens. However, the underlying biological role of MLO genes in strawberry is still unknown. In the present study, the genomic structure of MLO genes were characterized in both diploid (Fragaria vesca) and octoploid strawberry (Fragaria ×ananassa), and the potential sources of MLO-mediated susceptibility were identified. Twenty MLO-like sequences were identified in F. vesca, with sixty-eight in F. ×ananassa. Phylogenetic analysis divides strawberry MLO genes into eight different clades, in which three FveMLO and ten FaMLO genes were grouped together with the functionally known MLO susceptibility. Out of ten FaMLO genes, FaMLO17-2 and FaMLO17-3 showed the highest similarity to the known susceptibility MLO proteins. Gene expression analysis of FaMLO genes was conducted using a multi-parental segregating population. Three expression quantitative trait loci (eQTL) were substantially associated with MLO transcript levels in mature fruits, suggesting discrete genetic control of susceptibility. These results are a critical first step in understanding allele function of MLO genes, and are necessary for further genetic studies of PM resistance in cultivated strawberry.


Sign in / Sign up

Export Citation Format

Share Document