scholarly journals Developmental Inhibition of Long Intergenic Non-Coding RNA, HOTAIRM1, Impairs Dopamine Neuron Differentiation and Maturation

2021 ◽  
Vol 22 (14) ◽  
pp. 7268
Author(s):  
Xiaoying Cui ◽  
Renata Ap. Nedel Pertile ◽  
Zilong Du ◽  
Wei Wei ◽  
Zichun Sun ◽  
...  

The dopaminergic (DA) system is important for a range of brain functions and subcortical DA development precedes many cortical maturational processes. The dysfunction of DA systems has been associated with neuropsychiatric disorders such as schizophrenia, depression, and addiction. DA neuron cell fate is controlled by a complex web of transcriptional factors that dictate DA neuron specification, differentiation, and maturation. A growing body of evidence suggests that these transcriptional factors are under the regulation of newly discovered non-coding RNAs. However, with regard to DA neuron development, little is known of the roles of non-coding RNAs. The long non-coding RNA (lncRNA) HOX-antisense intergenic RNA myeloid 1 (HOTAIRM1) is present in adult DA neurons, suggesting it may have a modulatory role in DA systems. Moreover, HOTAIRM1 is involved in the neuronal differentiation in human stem cells suggesting it may also play a role in early DA neuron development. To determine its role in early DA neuron development, we knocked down HOTAIRM1 using RNAi in vitro in a human neuroblastoma cell line, and in vivo in mouse DA progenitors using a novel in utero electroporation technique. HOTAIRM1 inhibition decreased the expression of a range of key DA neuron specification factors and impaired DA neuron differentiation and maturation. These results provide evidence of a functional role for HOTAIRM1 in DA neuron development and differentiation. Understanding of the role of lncRNAs in the development of DA systems may have broader implications for brain development and neurodevelopmental disorders such as schizophrenia.

Open Medicine ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. 1121-1131
Author(s):  
Bo Wei ◽  
Gui-rong Xiao ◽  
Cheng-long Wu ◽  
Yi-qin Xu

Abstract Parkinson’s disease (PD) is a prevalent neurodegenerative disease. Currently, the molecular mechanisms underlying the progressions of PD are not fully understood. The human neuroblastoma cell line SH-SY5Y has been widely used as an in vitro model for PD. This study aims to investigate the molecular mechanisms of the non-coding RNA-mediated SH-SY5Y differentiation induced by retinoic acid (RA). By microArray analysis, lncRNA HAGLR was observed to be significantly upregulated during the RA-induced SH-SY5Y differentiation. Silencing HAGLR blocked the RA-induced SH-SY5Y differentiation. Moreover, bioinformatical analysis illustrated that miR-130a-3p contains binding sites for HAGLR. The RNA-pull down assay and luciferase assay demonstrated that HAGLR functioned as a ceRNA of miR-130a-3p in SH-SY5Y cells. Overexpression of miR-130a-3p effectively inhibited SH-SY5Y differentiation. We identified MeCP2, a vital molecule in neuronal diseases, to be a direct target of miR-130a-3p in SH-SY5Y cells by western blot and luciferase assays. The rescue experiments verified that recovery of miR-130a-3p in HAGLR-overexpressing SH-SY5Y cells could successfully overcome the RA-induced SH-SY5Y differentiation by targeting MeCP2. In summary, this study reveals a potential molecular mechanism for the lncRNA-HAGLR-promoted in vitro neuron differentiation by targeting the miR-130a-3p-MeCP2 axis, contributing to the understanding of the pathogenesis and progression of PD.


2012 ◽  
Vol 23 (8) ◽  
pp. 1435-1445 ◽  
Author(s):  
Tiziana Squillaro ◽  
Nicola Alessio ◽  
Marilena Cipollaro ◽  
Mariarosa Anna Beatrice Melone ◽  
Giuseppe Hayek ◽  
...  

MECP2 protein binds preferentially to methylated CpGs and regulates gene expression by causing changes in chromatin structure. The mechanism by which impaired MECP2 activity can induce pathological abnormalities in the nervous system of patients with Rett syndrome (RTT) is not clearly understood. To gain further insight into the role of MECP2 in human neurogenesis, we compared the neural differentiation process in mesenchymal stem cells (MSCs) obtained from a RTT patient and from healthy donors. We further analyzed neural differentiation in a human neuroblastoma cell line carrying a partially silenced MECP2 gene. Senescence and reduced expression of neural markers were observed in proliferating and differentiating MSCs from the RTT patient, which suggests that impaired activity of MECP2 protein may impair neural differentiation, as observed in RTT patients. Next, we used an inducible expression system to silence MECP2 in neuroblastoma cells before and after the induction of neural differentiation via retinoic acid treatment. This approach was used to test whether MECP2 inactivation affected the cell fate of neural progenitors and/or neuronal differentiation and maintenance. Overall, our data suggest that neural cell fate and neuronal maintenance may be perturbed by senescence triggered by impaired MECP2 activity either before or after neural differentiation.


2020 ◽  
Vol 17 (2) ◽  
pp. 169-183 ◽  
Author(s):  
İrem Bozbey ◽  
Suat Sari ◽  
Emine Şalva ◽  
Didem Kart ◽  
Arzu Karakurt

Background: Azole antifungals are among the first-line drugs clinically used for the treatment of systemic candidiasis, a deadly type of fungal infection that threatens mostly immunecompromised and hospitalized patients. Some azole derivatives were also reported to have antiproliferative effects on cancer cells. Objective: In this study, 1-(4-trifluoromethylphenyl)-2-(1H-imidazol-1-yl)ethanone (3), its oxime (4), and a series of its novel oxime ester derivatives (5a-v) were synthesized and tested for their in vitro antimicrobial activities against certain ATCC standard strains of Candida sp. fungi and bacteria. The compounds were also tested for their cytotoxic effects against mouse fibroblast and human neuroblastoma cell lines. Molecular modeling studies were performed to provide insights into their possible mechanisms for antifungal and antibacterial actions. Methods: The compounds were synthesized by the reaction of various oximes with acyl chlorides. Antimicrobial activity of the compounds was determined according to the broth microdilution method. For the determination of cytotoxic effect, we used MTS assay. Molecular docking and QM/MM studies were performed to predict the binding mechanisms of the active compounds in the catalytic site of C. albicans CYP51 (CACYP51) and S. aureus flavohemoglobin (SAFH), the latter of which was created via homology modeling. Results: 5d, 5l, and 5t showed moderate antifungal activity against C. albicans, while 3, 5c, and 5r showed significant antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa. Most of the compounds showed approximately 40-50% inhibition against the human neuroblastoma cells at 100 µM. In this line, 3 was the most potent with an IC50 value of 82.18 μM followed by 5a, 5o, and 5t. 3 and 5a were highly selective to the neuroblastoma cells. Molecular modelling results supported the hypothesis that our compounds were inhibitors of CAYP51 and SAFH. Conclusion: This study supports that oxime ester derivatives may be used for the development of new antimicrobial and cytotoxic agents.


2021 ◽  
Vol 14 (8) ◽  
pp. 750
Author(s):  
Zahira Tber ◽  
Mohammed Loubidi ◽  
Jabrane Jouha ◽  
Ismail Hdoufane ◽  
Mümin Alper Erdogan ◽  
...  

We report herein the evaluation of various pyrido[2′,1′:2,3]imidazo[4,5-c]isoquinolin-5-amines as potential cytotoxic agents. These molecules were obtained by developing the multicomponent Groebke–Blackburn–Bienaymé reaction to yield various pyrido[2′,1′:2,3]imidazo[4,5-c]quinolines which are isosteres of ellipticine whose biological activities are well established. To evaluate the anticancer potential of these pyrido[2′,1′:2,3]imidazo[4,5-c]isoquinolin-5-amine derivatives in the human neuroblastoma cell line, the cytotoxicity was examined using the WST-1 assay after 72 h drug exposure. A clonogenic assay was used to assess the ability of treated cells to proliferate and form colonies. Protein expressions (Bax, bcl-2, cleaved caspase-3, cleaved PARP-1) were analyzed using Western blotting. The colony number decrease in cells was 50.54%, 37.88% and 27.12% following exposure to compounds 2d, 2g and 4b respectively at 10 μM. We also show that treating the neuroblastoma cell line with these compounds resulted in a significant alteration in caspase-3 and PARP-1 cleavage.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gessica Sala ◽  
Tommaso Bocci ◽  
Valentina Borzì ◽  
Marta Parazzini ◽  
Alberto Priori ◽  
...  

AbstractDespite transcranial Direct Current Stimulation (DCS) is currently proposed as a symptomatic treatment in Parkinson’s disease, the intracellular and molecular mechanisms elicited by this technique are still unknown, and its disease-modifying potential unexplored. Aim of this study was to elucidate the on-line and off-line effects of DCS on the expression, aggregation and degradation of alpha-synuclein (asyn) in a human neuroblastoma cell line under basal conditions and in presence of pharmachologically-induced increased asyn levels. Following DCS, gene and protein expression of asyn and its main autophagic catabolic pathways were assessed by real-time PCR and Western blot, extracellular asyn levels by Dot blot. We found that, under standard conditions, DCS increased monomeric and reduced oligomeric asyn forms, with a concomitant down-regulation of both macroautophagy and chaperone-mediated autophagy. Differently, in presence of rotenone-induced increased asyn, DCS efficiently counteracted asyn accumulation, not acting on its gene transcription, but potentiating its degradation. DCS also reduced intracellular and extracellular asyn levels, increased following lysosomal inhibition, independently from autophagic degradation, suggesting that other mechanisms are also involved. Collectively, these findings suggest that DCS exerts on-line and off-line effects on the expression, aggregation and autophagic degradation of asyn, indicating a till unknown neuroprotective role of tDCS.


Sign in / Sign up

Export Citation Format

Share Document