scholarly journals Effectiveness Assessment of a Modified Preservation Solution Containing Thyrotropin or Follitropin Based on Biochemical Analysis in Perfundates and Homogenates of Isolated Porcine Kidneys after Static Cold Storage

2021 ◽  
Vol 22 (16) ◽  
pp. 8360
Author(s):  
Aneta Ostróżka-Cieślik ◽  
Barbara Dolińska ◽  
Florian Ryszka

In this paper, we assess the nephroprotective effects of thyrotropin and follitropin during ischaemia. The studies were performed in vitro in a model of isolated porcine kidneys stored in Biolasol (FZNP, Biochefa, Sosnowiec, Poland) and modified Biolasol (TSH: 1 µg/L; FSH 1 µg/L). We used the static cold storage method. The study was carried out based on 30 kidneys. The kidneys were placed in 500 mL of preservation solution chilled to 4 °C. The samples for biochemical tests were collected during the first kidney perfusion (after 2 h of storage) and during the second perfusion (after 48 h of storage). The results of ALT, AST, and LDH activities confirm the effectiveness of Biolasol + p-TSH in maintaining the structural integrity of renal cell membranes. Significantly reduced biochemical parameters of kidney function, i.e., creatinine and protein concentrations were also observed after 48 h storage. The protective effect of Biasol + p-TSH is most pronounced after 2 h of storage, suggesting a mild course of damage thereafter. A mild deterioration of renal function was observed after 48 h. The results of our analyses did not show any protective effect of Biolasol + p-FSH on the kidneys during ischaemia.

Author(s):  
Henry H. Eichelberger ◽  
John G. Baust ◽  
Robert G. Van Buskirk

For research in cell differentiation and in vitro toxicology it is essential to provide a natural state of cell structure as a benchmark for interpreting results. Hypothermosol (Cryomedical Sciences, Rockville, MD) has proven useful in insuring the viability of synthetic human epidermis during cold-storage and in maintaining the epidermis’ ability to continue to differentiate following warming.Human epidermal equivalent, EpiDerm (MatTek Corporation, Ashland, MA) consisting of fully differentiated stratified human epidermal cells were grown on a microporous membrane. EpiDerm samples were fixed before and after cold-storage (4°C) for 5 days in Hypothermosol or skin culture media (MatTek Corporation) and allowed to recover for 7 days at 37°C. EpiDerm samples were fixed 1 hour in 2.5% glutaraldehyde in sodium cacodylate buffer (pH 7.2). A secondary fixation with 0.2% ruthenium tetroxide (Polysciences, Inc., Warrington, PA) in sodium cacodylate was carried out for 3 hours at 4°C. Other samples were similarly fixed, but with 1% Osmium tetroxide in place of ruthenium tetroxide. Samples were dehydrated through a graded acetone series, infiltrated with Spurrs resin (Polysciences Inc.) and polymerized at 70°C.


2010 ◽  
Vol 4 (2) ◽  
Author(s):  
Robin M. Brusen ◽  
Christopher D. Rolfes ◽  
Stephen A. Howard ◽  
Michael G. Bateman ◽  
Paul A. Iaizzo

The current methodologies of clinical heart transplantation limit the ischemic window to 4–6 h. Periods longer than this can induce dysfunction in the organ and can lead to increased patient morbidity and mortality. An alternative to the current methods of static cold storage (CS) is continuous hypothermic perfusion (CHP), where a hypothermic oxygenated crystalloid solution is mechanically perfused through the coronary arteries. This has been shown to preserve the function for up to 72 h, but the techniques have yet to be optimized. We have developed an apparatus and methodology for performing CHP on large mammalian hearts, followed by reanimation in our in vitro Langendorff apparatus (The Visible HeartTM). We are also investigating the utility of the cardioprotective agents docosahexaenoic acid and [D-Ala2, D-Leu5] enkephalin, both of which have shown cardioprotective effects in our laboratory, and we believe that their addition to the preservation solution can further extend the transplant window. A series of pilot studies has been performed to date, with modestly successful results. Hearts preserved with CHP seem to show better functionality than CS hearts but far worse functionality than hearts reanimated immediately after explant. We hope to use this system to optimize CHP methodology and eventually develop a system for prolonging the window for heart transplantation.


1966 ◽  
Vol 44 (3) ◽  
pp. 401-407 ◽  
Author(s):  
D. C. Triantaphyllopoulos ◽  
E. H. Krikke

Addition of fibrinogen or of the anticoagulant fraction of incubated fibrinogen (AFIF) to fresh blood in vitro decreases both the osmotic and the mechanical fragility of the erythrocytes. This suggests that these proteins contribute to the structural integrity of the red cells. On the other hand, addition of albumin does not affect significantly the fragility. Overnight incubation of the blood–protein mixtures abolishes the protective effect of fibrinogen on both kinds of fragility and that of AFIF on the osmotic type. The increased resistance of the red cells, however, to mechanical trauma in the presence of AFIF remains unaffected by incubation.


2000 ◽  
Vol 49 (1-2) ◽  
pp. 23
Author(s):  
L. Bergamaschini ◽  
G. Gobbo ◽  
E. Rossi ◽  
A. Ponti ◽  
S. Gatti ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3465
Author(s):  
Aneta Ostróżka-Cieślik ◽  
Barbara Dolińska ◽  
Florian Ryszka

Zinc is an effective anti-inflammatory and antioxidant trace element. The aim of this study was to analyse the protective effect of zinc and zinc–prolactin systems as additives of preservation solutions in the prevention of nephron damage caused during ischemia. The study used a model for storing isolated porcine kidneys in Biolasol®. The solution was modified with the addition of Zn at a dose of 1 µg/L and Zn: 1 µg/L with prolactin (PRL): 0.1 µg/L. After 2 h and 48 h of storage, the levels of alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, sodium, potassium, creatinine and total protein were determined. Zinc added to the Biolasol® composition at a dose of 1 µg/L showed minor effectiveness in the protection of nephrons. In turn, Zn2+ added to Biolasol + PRL (PRL: 0.1 µg/L) acted as a prolactin inhibitor. We do not recommend the addition of Zn(II) (1 µg/L) and Zn(II) (1 µg/L) + PRL (0.1 µg/L) to the Biolasol solution.


1984 ◽  
Vol 51 (01) ◽  
pp. 089-092 ◽  
Author(s):  
M A Boogaerts ◽  
J Van de Broeck ◽  
H Deckmyn ◽  
C Roelant ◽  
J Vermylen ◽  
...  

SummaryThe effect of alfa-tocopherol on the cell-cell interactions at the vessel wall were studied, using an in vitro model of human umbilical vein endothelial cell cultures (HUEC). Immune triggered granulocytes (PMN) will adhere to and damage HUEC and platelets enhance this PMN mediated endothelial injury. When HUEC are cultured in the presence of vitamin E, 51Cr-leakage induced by complement stimulated PMN is significantly decreased and the enhanced cytotoxicity by platelets is completely abolished (p <0.001).The inhibition of PMN induced endothelial injury is directly correlated to a diminished adherence of PMN to vitamin E- cultured HUEC (p <0.001), which may be mediated by an increase of both basal and stimulated endogenous prostacyclin (PGI2) from alfa-tocopherol-treated HUEC (p <0.025). The vitamin E-effect is abolished by incubation of HUEC with the irreversible cyclo-oxygenase inhibitor, acetylsalicylic acid, but the addition of exogenous PGI2 could not reproduce the vitamin E-mediated effects.We conclude that vitamin E exerts a protective effect on immune triggered endothelial damage, partly by increasing the endogenous anti-oxidant potential, partly by modulating intrinsic endothelial prostaglandin production. The failure to reproduce vitamin E-protection by exogenously added PGI2 may suggest additional, not yet elucidated vitamin E-effects on endothelial metabolism.


2020 ◽  
Author(s):  
K. Zerrouki ◽  
N. Djebli ◽  
L. Gadouche ◽  
I. Erdogan Orhan ◽  
F. SezerSenol Deniz ◽  
...  

Nowadays, because of the industrialization, a lot of contaminant were available ; the consequences of this availability are apparition of diseases including neurodegeneration. Neurodegenerative diseases of the human brain comprise a variety of disorders that affect an increasing percentage of the population. This study is based on the effect of the Boswellic resin, which is from a medicinal plant and known for its antioxidant effects on nerve cell damage. The objective of this work was to evaluate the in vitro and in vivo effects of the Boswellic resin on anticholinesterase activity and Alzheimer’s disease (AD) induced by D-galactose and aluminum tetrachloride in Swiss mice. Chemical composition of the resin essential oil was identified by the CG-MS analysis. The antioxidant activity was also assessed by the DMPD and metal chelation methods. In order to understand the mechanism of memory improvement, the acetylcholinesterase, AChE, and butyrylcholinesterase, BChE, inhibitory assays were performed. In vivo part of the study was achieved on Swiss mice divided into four groups: control, AD model, treated AD, and treated control group. The identification of chemical composition by CG-MS reach the 89.67% of the total extract compounds presented some very important molecules (p-Cymene, n-Octyl acetate, α-Pinene…). The present study proves that Boswellic resin improves memory and learning in treated Alzheimer’s group, modulates the oxidative stress and be involved in the protective effect against amyloid deposition and neurodegeneration, and stimulates the immune system in mice’s brain.


Sign in / Sign up

Export Citation Format

Share Document