scholarly journals Induction of Apoptotic Temperature in Photothermal Therapy under Various Heating Conditions in Multi-Layered Skin Structure

2021 ◽  
Vol 22 (20) ◽  
pp. 11091
Author(s):  
Donghyuk Kim ◽  
Hyunjung Kim

Recently, photothermal therapy has attracted attention as an alternative treatment to conventional surgical techniques because it does not lead to bleeding and patients quickly recover after treatment compared to incisional surgery. Photothermal therapy induces tumor cell death through an increase in the temperature using the photothermal effect, which converts light energy into thermal energy. This study was conducted to perform numerical analysis based on heat transfer to induce apoptosis of tumor tissue under various heating conditions in photothermal therapy. The Monte Carlo method was applied to evaluate a multi-layered skin structure containing squamous cell carcinoma. Tissue-equivalent phantom experiments verified the numerical model. Based on the effective apoptosis retention ratio, the numerical analysis results showed the quantitative correlation for the laser intensity, volume fraction of gold nanorods injected into the tumor, and cooling time. This study reveals optimal conditions for maximizing apoptosis within tumor tissue while minimizing thermal damage to surrounding tissues under various heating conditions. This approach may be useful as a standard treatment when performing photothermal therapy.

2021 ◽  
Vol 11 (3) ◽  
pp. 1103
Author(s):  
Donghyuk Kim ◽  
Sukkyung Kang ◽  
Hyunjung Kim

The incidence of skin cancer is increasing with the recent increase in UV exposure. The treatment of skin cancer generally proceeds through an excision of the tumor area, which causes bleeding into the affected area and surrounding tissues, and there is a possibility that secondary infection may occur. Photothermal therapy is drawing attention as an alternative treatment to overcome this limitation. In this study, a numerical analysis was performed on skin cancer tumors located between the reticular dermis and the skin surface by applying the Monte Carlo method. The numerical analysis derives a quantitative correlation using an effective apoptosis ratio with respect to the intensity of the laser that produces the optimal photothermal therapy effect and the volume fraction of gold nanorods (GNRs) injected into a tumor. Through this study, it is confirmed that the optimal treatment effect exists for the depth and length of the various tumors, the intensity of the laser, and the volume fraction of GNRs to minimize the thermal damage to the surrounding normal tissues while maximizing the apoptosis in the tumor. It is expected that it can be used as an optimal condition for better treatment while performing photothermal therapy in the future.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1868
Author(s):  
Siti Hajar Zuber ◽  
Nurul Ab. Aziz Hashikin ◽  
Mohd Fahmi Mohd Yusof ◽  
Mohd Zahri Abdul Aziz ◽  
Rokiah Hashim

Rhizophora spp. particleboard with the incorporation of lignin and soy flour as binders were fabricated and the influence of different percentages of lignin and soy flour (0%, 6% and 12%) on the physico-mechanical properties of the particleboard were studied. The samples were characterised by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), X-ray fluorescence (XRF) and internal bonding. The results stipulated that the addition of binders in the fabrication of the particleboard did not change the functional groups according to the FTIR spectrum. For XRD, addition of binders did not reveal any major transformation within the composites. SEM and EDX analyses for all percentages of binders added showed no apparent disparity; however, it is important to note that the incorporation of binders allows better bonding between the molecules. In XRF analysis, lower percentage of chlorine in the adhesive-bonded samples may be advantageous in maintaining the natural properties of the particleboard. In internal bonding, increased internal bond strength in samples with binders may indicate better structural integrity and physico-mechanical strength. In conclusion, the incorporation of lignin and soy flour as binders may potentially strengthen and fortify the particleboard, thus, can be a reliable phantom in radiation dosimetry applications.


Author(s):  
Gururaj M. Neelgund ◽  
Aderemi Oki ◽  
Subhani Bandara ◽  
Laura Carson

Herein, we present the rational synthesis of a multimode photothermal agent, NGO–FA–CuS, for the advancement of photothermal therapy of cancer.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Songtao Zhang ◽  
Longhai Jin ◽  
Jianhua Liu ◽  
Yang Liu ◽  
Tianqi Zhang ◽  
...  

AbstractIn spite of the tumor microenvironments responsive cancer therapy based on Fenton reaction (i.e., chemodynamic therapy, CDT) has been attracted more attentions in recent years, the limited Fenton reaction efficiency is the important obstacle to further application in clinic. Herein, we synthesized novel FeO/MoS2 nanocomposites modified by bovine serum albumin (FeO/MoS2-BSA) with boosted Fenton reaction efficiency by the synergistic effect of co-catalyze and photothermal effect of MoS2 nanosheets triggered by the second near-infrared (NIR II) light. In the tumor microenvironments, the MoS2 nanosheets not only can accelerate the conversion of Fe3+ ions to Fe2+ ions by Mo4+ ions on their surface to improve Fenton reaction efficiency, but also endow FeO/MoS2-BSA with good photothermal performances for photothermal-enhanced CDT and photothermal therapy (PTT). Consequently, benefiting from the synergetic-enhanced CDT/PTT, the tumors are eradicated completely in vivo. This work provides innovative synergistic strategy for constructing nanocomposites for highly efficient CDT.


1974 ◽  
Vol 27 (3) ◽  
pp. 289-297 ◽  
Author(s):  
H. H. Hubbell ◽  
Wei-Li Chen ◽  
W. H. Shinpaugh ◽  
T. D. Jones

2006 ◽  
Vol 51 (21) ◽  
pp. 5581-5590 ◽  
Author(s):  
Jeremy C Hebden ◽  
Ben D Price ◽  
Adam P Gibson ◽  
Gary Royle

Nanomaterials ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 880 ◽  
Author(s):  
Yanhua Yao ◽  
Nannan Zhang ◽  
Xiao Liu ◽  
Qiaofeng Dai ◽  
Haiying Liu ◽  
...  

In this paper, the plasmon resonance effects of gold nanorods was used to achieve rapid photothermal therapy for malignant melanoma cells (A375 cells). After incubation with A375 cells for 24 h, gold nanorods were taken up by the cells and gold nanorod clusters were formed naturally in the organelles of A375 cells. After analyzing the angle and space between the nanorods in clusters, a series of numerical simulations were performed and the results show that the plasmon resonance coupling between the gold nanorods can lead to a field enhancement of up to 60 times. Such high energy localization causes the temperature around the nanorods to rise rapidly and induce cell death. In this treatment, a laser as low as 9.3 mW was used to irradiate a single cell for 20 s and the cell died two h later. The cell death time can also be controlled by changing the power of laser which is focused on the cells. The advantage of this therapy is low laser treatment power, short treatment time, and small treatment range. As a result, the damage of the normal tissue by the photothermal effect can be greatly avoided.


Sign in / Sign up

Export Citation Format

Share Document