scholarly journals Co-Immobilization of Rhizopus oryzae and Candida rugosa Lipases onto mMWCNTs@4-arm-PEG-NH2—A Novel Magnetic Nanotube–Polyethylene Glycol Amine Composite—And Its Applications for Biodiesel Production

2021 ◽  
Vol 22 (21) ◽  
pp. 11956
Author(s):  
Saadiah A. Abdulmalek ◽  
Kai Li ◽  
Jianhua Wang ◽  
Michael Kidane Ghide ◽  
Yunjun Yan

This article describes the successful synthesis of a novel nanocomposite of superparamagnetic multi-walled nanotubes with a four-arm polyethylene glycol amine polymer (mMWCNTs@4-arm-PEG-NH2). This composite was then employed as a support for the covalent co-immobilization of Rhizopus oryzae and Candida rugosa lipases under appropriate conditions. The co-immobilized lipases (CIL-mMWCNTs@4-arm-PEG-NH2) exhibited maximum specific activity of 99.626U/mg protein, which was 34.5-fold superior to that of free ROL, and its thermal stability was greatly improved. Most significantly, CIL-mMWCNTs@4-arm-PEG-NH2 was used to prepare biodiesel from waste cooking oil under ultrasound conditions, and within 120 min, the biodiesel conversion rate reached 97.64%. This was due to the synergy effect between ROL and CRL and the ultrasound-assisted enzymatic process, resulting in an increased biodiesel yield in a short reaction time. Moreover, after ten reuse cycles, the co-immobilized lipases still retained a biodiesel yield of over 78.55%, exhibiting excellent operational stability that is attractive for practical applications. Consequently, the combined use of a novel designed carrier, the co-immobilized lipases with synergy effect, and the ultrasound-assisted enzymatic reaction exhibited potential prospects for future applications in biodiesel production and various industrial applications.

2015 ◽  
Vol 18 (1) ◽  
pp. 29-39
Author(s):  
Nhu Thi Tuyet Nguyen ◽  
Nguyen Thi Nguyen ◽  
Hoa Ngoc Phan

In this work, lipase from Candida rugosa (LCR) was used as a catalyst for the transesterification reaction of fish oil with methanol. The research process consists of three stages: determine the material properties and the activity of the enzyme from Candida rugosa, transeter of fish oil with methanol catalyzed by the enzyme lipase, evaluation indicators of the quality of biodiesel obtained. Fish oil contains 62% unsaturated fatty acid, acid value of 2.2 mg KOH/g. Activity and specific activity of enzyme were respectively 1064 U/mg enzyme and 2782 U/mg protein. Factors affecting the efficiency of conversion of fatty acid methyl esters - FAME were investigated: the molar ratio of methanol/fish oil, ratio of enzyme/fish oil, temperature reaction, pH reaction, concentration of buffer and reaction time. Yield of biodiesel conversion was 92.65% with optimal conditions: rate of methanol/fish oil was 4:1, the ratio of enzyme/substract was 2%, reaction temperature was 40°C, additional 10% buffer solution pH 7 with 96 hour response time. Products biodiesel obtained FAME components accounted for 98.94%; density at 15°C is 0.8816 g/ml; no free water and glycerine, consistent with the original standard biodiesel (B100) (TCVN 7717:2007). However, the acid value of 1.7 mg KOH products/g higher than the allowable value.


Author(s):  
Shimaa E. Helal ◽  
Hemmat M. Abdelhady ◽  
Khadiga A. Abou-Taleb ◽  
Mervat G. Hassan ◽  
Mahmoud M. Amer

Abstract Background Rhizopus species is among the most well-known lipase producers, and its enzyme is suitable for use in many industrial applications. Our research focuses on the production of lipase utilizing waste besides evaluating its applications. Results An extracellular lipase was partially purified from the culture broth of Rhizopus oryzae R1 isolate to apparent homogeneity using ammonium sulfate precipitation followed by desalting via dialysis. The partially purified enzyme was non-specific lipase and the utmost activity was recorded at pH 6, 40 °C with high stability for 30 min. The constants Km and Vmax, calculated from the Lineweaver-Burk plot, are 0.3 mg/mL and 208.3 U/mL, respectively. Monovalent metal ions such as Na+ (1 and 5 mM) and K+ (5 mM) were promoters of the lipase to enhance its activity with 110, 105.5, and 106.5%, respectively. Chitosan was used as a perfect support for immobilization via both adsorption and cross-linking in which the latter method attained immobilization efficiency of 99.1% and reusability of 12 cycles. The partially purified enzyme proved its ability in forming methyl oleate (biodiesel) through the esterification of oleic acid and transesterification of olive oil. Conclusion The partially purified and immobilized lipase from Rhizopus oryzae R1 approved excellent efficiency, reusability, and a remarkable role in detergents and biodiesel production.


2011 ◽  
Vol 102 (2) ◽  
pp. 2105-2108 ◽  
Author(s):  
Jong Ho Lee ◽  
Sung Bong Kim ◽  
Seong Woo Kang ◽  
Yoon Seok Song ◽  
Chulhwan Park ◽  
...  

2020 ◽  
Vol 10 (15) ◽  
pp. 5085
Author(s):  
Fidel Toldrá-Reig ◽  
Leticia Mora ◽  
Fidel Toldrá

Biodiesel constitutes an attractive source of energy because it is renewable, biodegradable, and non-polluting. Up to 20% biodiesel can be blended with fossil diesel and is being produced and used in many countries. Animal fat waste represents nearly 6% of total feedstock used to produce biodiesel through alkaline catalysis transesterification after its pretreatment. Lipase transesterification has some advantages such as the need of mild conditions, absence of pretreatment, no soap formation, simple downstream purification process and generation of high quality biodiesel. A few companies are using liquid lipase formulations and, in some cases, immobilized lipases for industrial biodiesel production, but the efficiency of the process can be further improved. Recent developments on immobilization support materials such as nanoparticles and magnetic nanomaterials have demonstrated high efficiency and potential for industrial applications. This manuscript reviews the latest advances on lipase transesterification and key operational variables for an efficient biodiesel production from animal fat waste.


Catalysts ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1100
Author(s):  
Thaís Carvalho Maester ◽  
Mariana Rangel Pereira ◽  
Aliandra M. Gibertoni Malaman ◽  
Janaina Pires Borges ◽  
Pâmela Aparecida Maldaner Pereira ◽  
...  

Enzyme-mediated esterification reactions can be a promising alternative to produce esters of commercial interest, replacing conventional chemical processes. The aim of this work was to verify the potential of an esterase for ester synthesis. For that, recombinant lipolytic enzyme EST5 was purified and presented higher activity at pH 7.5, 45 °C, with a Tm of 47 °C. Also, the enzyme remained at least 50% active at low temperatures and exhibited broad substrate specificity toward p-nitrophenol esters with highest activity for p-nitrophenyl valerate with a Kcat/Km of 1533 s−1 mM−1. This esterase exerted great properties that make it useful for industrial applications, since EST5 remained stable in the presence of up to 10% methanol and 20% dimethyl sulfoxide. Also, preliminary studies in esterification reactions for the synthesis of methyl butyrate led to a specific activity of 127.04 U·mg−1. The enzyme showed higher esterification activity compared to other literature results, including commercial enzymes such as LIP4 and CL of Candida rugosa assayed with butyric acid and propanol which showed esterification activity of 86.5 and 15.83 U·mg−1, respectively. In conclusion, EST5 has potential for synthesis of flavor esters, providing a concept for its application in biotechnological processes.


2007 ◽  
Vol 131 (2) ◽  
pp. S123 ◽  
Author(s):  
Seung Wook Kim ◽  
Dong Hwan Lee ◽  
Jong Ho Lee ◽  
Jung Soo Lim

Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 421
Author(s):  
Xiaoxu Yang ◽  
Yan Zhang ◽  
Huimin Pang ◽  
Sheng Yuan ◽  
Xuxia Wang ◽  
...  

In this study, we overcame the limitations of single-enzyme system catalysis by codisplaying Candida rugosa lipase 1 (CRL1) and Rhizopus oryzae lipase (ROL) on the cell surfaces of the whole-cell catalyst Pichia pastoris to produce biodiesel from tallow seed oil. We screened double antibiotic-resistant strains on tributyrin plates, performed second electroporation based on single-displayed ROL on GS115/KpRS recombinants and single-displayed CRL1 on GS115/ZCS recombinants and obtained an ROL/CRL1 codisplay on P. pastoris GS115 surfaces. The maximum activity of the codisplaying GS115/pRCS recombinant was 470.59 U/g dried cells, which was 3.9-fold and 1.3-fold higher than that of single-displayed ROL and CRL1, respectively. When self-immobilized lipases were used as whole-cell catalysts, the rate of methyl ester production from GS115/pRCS harboring ROL and CRL1 was 1.4-fold higher than that obtained with single-displayed ROL. Therefore, biodiesel catalysis by synergetic codisplayed enzymes is an alternative biodiesel production strategy.


Author(s):  
Selfela Restu Adina ◽  
Antonius Suwanto ◽  
Anja Meryandini ◽  
Esti Puspitasari

Abstract Background Lipases are promising biocatalysts for industrial applications and attract attention to be explored. A novel acidic lipase has been isolated from the lipolytic bacteria Micrococcus luteus EMP48-D (LipEMP48-D) screened from tempeh. The lipase gene had previously been overexpressed in Escherichia coli BL21, but the expression level obtained was relatively low. Here, to improve the expression level, the lipase gene was cloned to Pichia pastoris. We eliminated the native signal sequence of M. luteus and replaced it with α-mating factor (α-MF) signal sequence. We also optimized and synthesized the lipase gene based on codon preference in P. pastoris. Results LipEMP48-D lipase was expressed as an extracellular protein. Codon optimization has been conducted for 20 codons, with the codon adaption index reaching 0.995. The highest extracellular lipase activity obtained reached 145.4 ± 4.8 U/mg under AOX1 promoter in P. pastoris KM71 strain, which was 9.7-fold higher than the previous activity in E. coli. LipEMP48-D showed the highest specific activity at pH 5.0 and stable within the pH range 3.0–5.0 at 40 °C. LipEMP48-D also has the capability of hydrolyzing various long-chain triglycerides, particularly olive oil (100%) followed by sunflower oil (88.5%). LipEMP48-D exhibited high tolerance for various polar organic solvents with low log P, such as isopropanol (115.7%) and butanol (114.6%). The metal ions (Na+, K+, Ca2+, Mg2+, Mn+) decreased enzyme activity up to 43.1%, while Fe2+ increased relative activity of enzymes up to 200%. The conversion of free fatty acid (FFA) into fatty acid methyl ester (FAME) was low around 2.95%. Conclusions This study was the first to report overexpression of Micrococcus lipase in yeast. The extracellular expression of this acidic lipase could be potential for biocatalyst in industrial fields, especially organic synthesis, food industry, and production of biodiesel.


Sign in / Sign up

Export Citation Format

Share Document