scholarly journals Senolytic Therapy for Cerebral Ischemia-Reperfusion Injury

2021 ◽  
Vol 22 (21) ◽  
pp. 11967
Author(s):  
Songhyun Lim ◽  
Tae Jung Kim ◽  
Young-Ju Kim ◽  
Cheesue Kim ◽  
Sang-Bae Ko ◽  
...  

Ischemic stroke is one of the leading causes of death, and even timely treatment can result in severe disabilities. Reperfusion of the ischemic stroke region and restoration of the blood supply often lead to a series of cellular and biochemical consequences, including generation of reactive oxygen species (ROS), expression of inflammatory cytokines, inflammation, and cerebral cell damage, which is collectively called cerebral ischemia-reperfusion (IR) injury. Since ROS and inflammatory cytokines are involved in cerebral IR injury, injury could involve cellular senescence. Thus, we investigated whether senolytic therapy that eliminates senescent cells could be an effective treatment for cerebral IR injury. To determine whether IR induces neural cell senescence in vitro, astrocytes were subjected to oxygen-glucose deprivation/reoxygenation (OGD/R). OGD/R induced astrocyte senescence and senescent cells in OGD/R-injured astrocytes were effectively eliminated in vitro by ABT263, a senolytic agent. IR in rats with intraluminal middle cerebral artery occlusion induced cellular senescence in the ischemic region. The senescent cells in IR-injured rats were effectively eliminated by intravenous injections of ABT263. Importantly, ABT263 treatment significantly reduced the infarct volume and improved neurological function in behavioral tests. This study demonstrated, for the first time, that senolytic therapy has therapeutic potential for cerebral IR injury.

2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Jialin He ◽  
Jianyang Liu ◽  
Yan Huang ◽  
Xiangqi Tang ◽  
Han Xiao ◽  
...  

The mechanism of Golgi apparatus (GA) stress responses mediated by GOLPH3 has been widely studied in ischemic stroke, and the neuroprotection effect of olfactory mucosa mesenchymal stem cells (OM-MSCs) against cerebral ischemia/reperfusion injury (IRI) has been preliminarily presented. However, the exact role of OM-MSCs in the GA stress response following cerebral IRI remains to be elucidated. In the present study, we used an oxygen-glucose deprivation/reoxygenation (OGD/R) model and reversible middle cerebral artery occlusion (MCAO) model to simulate cerebral IRI in vitro and in vivo. Our results showed that the level of GOLPH3 protein, reactive oxygen species (ROS), and Ca2+ was upregulated, SPCA1 level was downregulated, and GA fragmentation was increased in ischemic stroke models, and OM-MSC treatment clearly ameliorated these GA stress responses in vitro and in vivo. Subsequently, the knockdown of PEDF in OM-MSCs using PEDF-specific siRNA further demonstrated that secretion of PEDF in OM-MSCs protected OGD/R-treated N2a cells and MCAO rats from GA stress response. Additionally, rescue experiment using specific pathway inhibitors suggested that OM-MSCs could promote the phosphorylation of the PI3K/Akt/mTOR pathway, thereby mitigating OGD/R-induced GA stress response and excessive autophagy. In conclusion, OM-MSCs minimized the GA stress response following cerebral IRI, at least partially, through the PEDF-PI3K/Akt/mTOR pathway.


2021 ◽  
pp. 1-12
Author(s):  
Yanfang Mao ◽  
Yang Qu ◽  
Qingdong Wang

Background: The diterpenoid cryptotanshinone (CTS) has wide biological functions, including inhibition of tumor growth, inflammation and apoptosis. The present study aimed to explore the possible effect of CTS on cerebral ischemia/reperfusion (I/R) injury and the underlying mechanisms. Methods: Male C57BL/6J mice underwent transient middle cerebral artery occlusion (tMCAO) and murine microglia BV2 cells were challenged by Oxygen/glucose deprivation, to mimic I/R and ischemic/hypoxic and reperfusion (H/R) injury, respectively. CTS was administered 0.5 h (10 mg/kg) after the onset of MCAO or 2 h (20μM) post OGD. Infarct volume and neurological deficit were measured. Immunofluorescence, qPCR, and western blot, were performed to detect the expression of cytokines, apoptotic marker, and M1/M2 phenotype-specific genes. Flow cytometry was applied for M1/M2 subpopulation or Annexin V/PI apoptosis assessment. Results: CTS significantly reduced cerebral infarct volume, neurologic deficit scores, pro-inflammatory cytokine production (IL-6, TNF-α, and IL-1β), apoptotic protein expression (cleaved caspase-3) of mice after tMCAO challenge. Furthermore, CTS attenuated CD16 + M1-type and elevated CD206 + M2-type microglia in vivo or in vitro. Conclusions: We propose that the neuroprotective effect of CTS in the I/R or H/R context are explained modulation of microglial polarization, suggesting therapeutic potential for cerebral ischemic stroke.


2021 ◽  
Author(s):  
Weifeng Shan ◽  
Huifeng Ge ◽  
Bingquan Chen ◽  
Linger Huang ◽  
Shaojun Zhu ◽  
...  

Abstract MiR-499a-5p was significantly down-regulated in degenerative tissues and correlated with apoptosis. Nonetheless, the biological function of miR-499a-5p in acute ischemic stroke has been still unclear. In this study, we found the plasma levels of miR-499a-5p were significantly down-regulated in 64 ischemic stroke patients and negatively correlated with the National Institutes of Health Stroke Scale score. Then, we constructed cerebral ischemia/reperfusion (I/R) injury in rats after middle cerebral artery occlusion and subsequent reperfusion and oxygen-glucose deprivation and reoxygenation (OGD/R) treated SH-SY5Y cell model. Transfection with miR-499a-5p mimic was accomplished by intracerebroventricular injection in the in vivo I/R injury model. We further found miR-499a-5p overexpression decreased infarct volumes and cell apoptosis in the in vivo I/R stroke model using TTC and TUNEL staining. PDCD4 was a direct target of miR-499a-5p by luciferase report assay and western blotting. Knockdown of PDCD4 reduced the infarct damage and cortical neuron apoptosis caused by I/R injury. MiR-499a-5p exerted neuroprotective roles mainly through inhibiting PDCD4-mediated apoptosis by CCK-8 assay, LDH release assay and flow cytometry analysis. These findings suggest that miR-499a-5p might represent a novel target that regulates brain injury by inhibiting PDCD4-mediating apoptosis.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Shibin Du ◽  
Youliang Deng ◽  
Hongjie Yuan ◽  
Yanyan Sun

Inflammation had showed its important role in the pathogenesis of cerebral ischemia and secondary damage. Safflower yellow B (SYB) had neuroprotective effects against oxidative stress-induced brain injuries, but the mechanisms were still largely unknown to us. In this study, we tried to investigate the anti-inflammation effects of SYB and the possible roles of AMPK/NF-κB signaling pathway on these protective effects. In vivo, brain ischemia/reperfusion (I/R) was induced by transient middle cerebral artery occlusion for 2 h and reperfusion for 20 h. Neurofunctional evaluation, infarction area, and brain water contents were measured. Brain injury markers and inflammatory cytokines levels were measured by ELISA kits. In vitro, cell viability, apoptosis, and LDH leakage were measured after I/R in PC12 cells. The expression and phosphorylation levels of AMPK, NF-κB p65, and P-IκB-α in cytoplasm and nuclear were measured by Western blotting. SiRNA experiment was performed to certify the role of AMPK. The results showed SYB reduced infarct size, improved neurological outcomes, and inhibited brain injury after I/R. In vitro test, SYB treatment alleviated PC12 cells injury and apoptosis and inhibited the inflammatory cytokines (IL-1, IL-6, TNF-α, and COX-2) in a dose-dependent manner. SYB treatment induced AMPK phosphorylation and inhibited NF-κB p65 nuclear translocation both in brain and in PC12 cells. Further studies also showed that the inhibition of NF-κB activity of SYB was through AMPK. In conclusion, SYB protected brain I/R injury through reducing expression of inflammatory cytokines and this effect might be partly due to the inhibition of NF-κB mediated by AMPK.


2020 ◽  
Vol 2020 ◽  
pp. 1-26
Author(s):  
Yan Huang ◽  
Zuo Liu ◽  
Fengbo Tan ◽  
Zhiping Hu ◽  
Ming Lu

Umbilical cord-derived mesenchymal stem cells (UC-MSCs) engraftment is a potential therapy for cerebral ischemic stroke. However, the harsh microenvironment induced by cerebral ischemia/reperfusion restricts the survival rate and therapeutic efficiency of the engrafted UC-MSCs. In this study, we explored whether small extracellular vesicles (EVs) derived from injured neuronal cells following exposure to cerebral ischemia/reperfusion insult affect the survival of transplanted UC-MSCs. To establish a simulation of cerebral ischemia/reperfusion microenvironment comprising engrafted UC-MSCs and neuronal cells, we cocultured EVs derived from injured N2A cells, caused by exposure to oxygen-glucose deprivation and reperfusion (OGD/R) insult, with UC-MSCs in a conditioned medium. Coculture of UC-MSCs with EVs exacerbated the OGD/R-induced apoptosis and oxidative stress. Suppression of EVs-release via knock-down of Rab27a effectively protected the UC-MSCs from OGD/R-induced insult. Moreover, hypoxia preconditioning not only elevated the survival of UC-MSCs but also improved the paracrine mechanism of injured N2A cells. Altogether, these results show that EVs from injured N2A cells exacerbates OGD/R-induced injury on transplanted UC-MSCs in vitro. Hypoxia preconditioning enhances the survival of the engrafted-UC-MSCs; hence, thus could be an effective approach for improving UC-MSCs therapy in ischemic stroke.


Sign in / Sign up

Export Citation Format

Share Document