scholarly journals Trihelix Transcription Factor ZmThx20 Is Required for Kernel Development in Maize

2021 ◽  
Vol 22 (22) ◽  
pp. 12137
Author(s):  
Peng Li ◽  
Zhaoxia Li ◽  
Guangning Xie ◽  
Juren Zhang

Maize kernels are the harvested portion of the plant and are related to the yield and quality of maize. The endosperm of maize is a large storage organ that constitutes 80–90% of the dry weight of mature kernels. Maize kernels have long been the study of cereal grain development to increase yield. In this study, a natural mutation that causes abnormal kernel development, and displays a shrunken kernel phenotype, was identified and named “shrunken 2008 (sh2008)”. The starch grains in sh2008 are loose and have a less proteinaceous matrix surrounding them. The total storage protein and the major storage protein zeins are ~70% of that in the wild-type control (WT); in particular, the 19 kDa and 22 kDa α-zeins. Map-based cloning revealed that sh2008 encodes a GT-2 trihelix transcription factor, ZmThx20. Using CRISPR/Cas9, two other alleles with mutated ZmThx20 were found to have the same abnormal kernel. Shrunken kernels can be rescued by overexpressing normal ZmThx20. Comparative transcriptome analysis of the kernels from sh2008 and WT showed that the GO terms of translation, ribosome, and nutrient reservoir activity were enriched in the down-regulated genes (sh2008/WT). In short, these changes can lead to defects in endosperm development and storage reserve filling in seeds.

2009 ◽  
Vol 21 (8) ◽  
pp. 2307-2322 ◽  
Author(s):  
Christian Breuer ◽  
Ayako Kawamura ◽  
Takanari Ichikawa ◽  
Rumi Tominaga-Wada ◽  
Takuji Wada ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3262
Author(s):  
Wojciech J. Szypuła ◽  
Beata Wileńska ◽  
Aleksandra Misicka ◽  
Agnieszka Pietrosiuk

This is the first report of an efficient and effective procedure to optimize the biosynthesis of huperzine A (HupA) and huperzine B (HupB) in vitro from Huperzia selago gametophytes. Axenic tissue cultures were established using spores collected from the sporophytes growing in the wild. The prothalia were obtained after 7–18 months. Approximately 90 up to 100% of the gametophytes were viable and grew rapidly after each transfer on to a fresh medium every 3 months. The best biomass growth index for prothallus calculated on a fresh (FW) and dry weight (DW) basis, at 24 weeks of culture, was 2500% (FW) and 2200% (DW), respectively. The huperzine A content in the gametophytes was very high and ranged from 0.74 mg/g to 4.73 mg/g DW. The highest yield HupA biosynthesis at >4 mg/g DW was observed on W/S medium without growth regulators at 8 to 24 weeks of culture. The highest HupB content ranged from 0.10 mg/g to 0.52 mg/g DW and was obtained on the same medium. The results demonstrate the superiority of H. selago gametophyte cultures, with the level of HupA biosynthesis approximately 42% higher compared to sporophyte cultures and 35-fold higher than when the alkaloid was isolated from H. serrata, its current source for the pharmaceutical industry. Moreover, the biosynthesis of HupB was several-fold more efficient than in H. selago sporophytes growing in the wild. HPLC-HR-MS analyses of the extracts identified eight new alkaloids previously unreported in H. selago: deacetylfawcettine, fawcettimine, 16-hydroxyhuperzine B, deacetyllycoclavine, annopodine, lycopecurine, des-N-methylfastigiatine and flabelline.


Weed Science ◽  
1987 ◽  
Vol 35 (5) ◽  
pp. 640-646 ◽  
Author(s):  
Sharon A. Clay ◽  
Ervin A. Oelke

Studies were conducted at Grand Rapids, MN, to determine the effect of giant burreed (Sparganium eurycarpumEngelm. # SPGEU) planted at 6, 12, and 24 corms/m2on wild rice (Zizania palustrisL. ‘K2′) growth and yield. Giant burreed, a spreading perennial, had shoot densities of 21, 29, and 42/m2at harvest for the 6, 12, and 24 corms/m2treatments, respectively. Wild rice yield and panicle number were reduced approximately 60% when giant burreed shoot density was 40/m2or higher when compared to the weed-free control. Giant burreed did not interfere with nutrient uptake of wild rice on a whole-plant basis, and increased N fertilizer application did not reduce losses in dry weight. Giant burreed reduced penetration of photosynthetically active radiation (PAR) from 2 to 35% in the wild rice canopy from the early tillering to the anthesis stage of wild rice development. In growth chamber studies, wild rice dry weight and panicle number were reduced by 46 and 65%, respectively, when wild rice was shaded for 12 weeks and compared to a full light treatment. Reduction of PAR penetration into the wild rice canopy appears to be the major mechanism of giant burreed interference with wild rice.


2020 ◽  
Vol 103 (4-5) ◽  
pp. 545-560
Author(s):  
Xiaoshuang Liu ◽  
Dechuan Wu ◽  
Tiaofeng Shan ◽  
Shanbin Xu ◽  
Ruiying Qin ◽  
...  

2014 ◽  
Vol 14 (1) ◽  
Author(s):  
Xiao-Hong Wang ◽  
Qing-Tian Li ◽  
Hao-Wei Chen ◽  
Wan-Ke Zhang ◽  
Biao Ma ◽  
...  

1994 ◽  
Vol 21 (6) ◽  
pp. 829 ◽  
Author(s):  
GW Singletary ◽  
R Banisadr ◽  
PL Keeling

Heat stress during maize seed development can interfere with endosperm starch biosynthesis and reduce seed size, an important component of yield. Our objectives were to evaluate the direct influence of temperature during grain filling on kernel growth, carbohydrate accumulation, and corresponding endosperm metabolism. Kernels of maize were grown in vitro at 25�C until 15 or 16 days after pollination and then subjected to various temperatures for the remainder of their development. Mature kernel dry weight declined 45% in a linear fashion between 22 and 36�C. The rate of starch accumulation reached a maximum at approximately 32�C, and when measured at frequent intervals, declined only slightly with further temperature increase to 35�C. Reduced seed size resulted from an abbreviated duration of starch-related metabolism, which did not appear to be limited by endogenous sugars. Instead, a survey of 12 enzymes of sugar and starch metabolism indicated that ADP glucose pyrophosphorylase and soluble starch synthase were unique in displaying developmental peaks of activity which were compressed both in amount and time, similar to the effect of temperature on starch accumulation. We conclude that decreased starch synthesis in heat-stressed maize kernels results from a premature decline in the activity of these enzymes.


1959 ◽  
Vol 12 (2) ◽  
pp. 146 ◽  
Author(s):  
LH May ◽  
MS Buttrose

Types, numbers, volumes, and weights of starch granules in the barley endosperm were measured at different times from anthesis to maturity. The formation of two types of granule was confirmed: the first (type A) was initiated until 15 days after anthesis; the second (type B) between 18 and 30 days. At maturity there were approximately 10 times as many type B granules as type A, although the latter made up 90 per cent. of the total granule volume. There was a linear relationship between starch granule and endosperm volume throughout kernel development, while the rate of increase in volume per unit granule volume was the same, irrespective of granule size, at anyone time. Starch weight increased as endosperm dry weight increased although the precise form of this relationship is in doubt. The interrelationships between starch granule weight and volume, and also endosperm dry weight and volume, suggest that both starch granules and endosperm increase in density during development.


Sign in / Sign up

Export Citation Format

Share Document