scholarly journals A Decade of Pollen Phosphoproteomics

2021 ◽  
Vol 22 (22) ◽  
pp. 12212
Author(s):  
Božena Klodová ◽  
Jan Fíla

Angiosperm mature pollen represents a quiescent stage with a desiccated cytoplasm surrounded by a tough cell wall, which is resistant to the suboptimal environmental conditions and carries the genetic information in an intact stage to the female gametophyte. Post pollination, pollen grains are rehydrated, activated, and a rapid pollen tube growth starts, which is accompanied by a notable metabolic activity, synthesis of novel proteins, and a mutual communication with female reproductive tissues. Several angiosperm species (Arabidopsis thaliana, tobacco, maize, and kiwifruit) were subjected to phosphoproteomic studies of their male gametophyte developmental stages, mostly mature pollen grains. The aim of this review is to compare the available phosphoproteomic studies and to highlight the common phosphoproteins and regulatory trends in the studied species. Moreover, the pollen phosphoproteome was compared with root hair phosphoproteome to pinpoint the common proteins taking part in their tip growth, which share the same cellular mechanisms.

Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2398
Author(s):  
Lenka Steinbachová ◽  
Jaroslav Matoušek ◽  
Gerhard Steger ◽  
Helena Matoušková ◽  
Sebastjan Radišek ◽  
...  

Viroids are small, non-coding, parasitic RNAs that promote developmental distortions in sensitive plants. We analyzed pollen of Nicotiana benthamiana after infection and/or ectopic transformation with cDNAs of citrus bark cracking viroid (CBCVd), apple fruit crinkle viroid (AFCVd) and potato spindle tuber viroid (PSTVd) variant AS1. These viroids were seed non-transmissible in N. benthamiana. All viroids propagated to high levels in immature anthers similar to leaves, while their levels were drastically reduced by approximately 3.6 × 103, 800 and 59 times in mature pollen of CBCVd, AFCVd and PSTVd infected N. benthamiana, respectively, in comparison to leaves. These results suggest similar elimination processes during male gametophyte development as in the Nicotiana tabacum we presented in our previous study. Mature pollen of N. benthamiana showed no apparent defects in infected plants although all three viroids induced strong pathological symptoms on leaves. While Nicotiana species have naturally bicellular mature pollen, we noted a rare occurrence of mature pollen with three nuclei in CBCVd-infected N. benthamiana. Changes in the expression of ribosomal marker proteins in AFCVd-infected pollen were detected, suggesting some changes in pollen metabolism. N. benthamiana transformed with 35S-driven viroid cDNAs showed strong symptoms including defects in pollen development. A large number of aborted pollen (34% and 62%) and a slight increase of young pollen grains (8% and 15%) were found in mature pollen of AFCVd and CBCVd transformants, respectively, in comparison to control plants (3.9% aborted pollen and 0.3% young pollen). Moreover, pollen grains with malformed nuclei or trinuclear pollen were found in CBCVd-transformed plants. Our results suggest that “forcing” overexpression of seed non-transmissible viroid led to strong pollen pathogenesis. Viroid adaptation to pollen metabolism can be assumed as an important factor for viroid transmissibility through pollen and seeds.


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1117A-1117
Author(s):  
Chantalak Tiyayon ◽  
Anita Nina Azarenko

Pollen development is an important event in plant reproduction. Hazelnut (Corylus avellana) male flower differentiation starts in summer and pollen shed is in the winter. Hazelnut pollen shed can vary up to 3 months between early to late flowering genotypes. Microsporogenesis and microgametogenesis of hazelnut is not well understood. Pollen development and differentiation of nine genotypes, representing early to late blooming cultivars from the National Clonal Germplasm Repository in Corvallis, Ore., were studied. Catkins were collected weekly from Aug. to Nov. 2002. Tissue sections were examined under the light microscope. Microsporogenesis was divided into five stages: archesporial cells, sporogenous cells and parietal layers, pollen mother cells (PMC), tetrads, and microspores. Microgametogenesis was distinguished between young pollen grains (uninucleate) and mature pollen grains (binucleate). On 4 Aug., cultivars were at different developmental stages of microsporogenesis. Early blooming cultivars had PMCs present. Later-blooming cultivars only contained archesporial cells. PMCs were present in all cultivars by 22 Aug. Microspores were observed on 26 Sept. in all cultivars. This study contributes to a better understanding of male gametophyte development in hazelnut, which has increased our ability to correlate hazelnut pollen development with bloom phenology.


2013 ◽  
Vol 41 (1) ◽  
pp. 65 ◽  
Author(s):  
Firoozeh TORABI ◽  
Ahmad MAJD ◽  
Shekoofeh ENTESHARI ◽  
Saeed IRIAN ◽  
Mohammad NABIUNI

In this research, the effect of salinity on the development of anther in hydroponically-grown borage was studied. Plants grown on hydroponic media are rapidly and transiently stressed. The overall objective of this research was to elucidate the microscopic effects of salinity on the formation, development, and structure of anthers. Flowers, at different developmental stages, were removed, fixed in FAA, embedded in paraffin, and cut into 7-10 μm slices using a microtome. Staining was carried out with Hematoxylin-Eosine, and the developmental stages of the control and NaCl-treated plants were compared. In control plants young anther consisted of 4 pollen sacs. Anther wall development followed the typical dicotyledonous pattern and was composed of an epidermal layer, an endothecium layer, and the tapetum. Microspore tetrads were tetrahedral. Salinity caused certain abnormalities during pollen developmental processes, such as the destruction of the anther wall and both the degeneration and production of abnormal pollen grains. A decrease in plant fecundity, which involves aborting pollen, followed by a change in resource from reproductive activities to metabolic reactions is possibly a general response to the deleterious effects of salinity.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Patrick M. Ferree ◽  
Satyaki Prasad

Satellites are one of the most enigmatic parts of the eukaryotic genome. These highly repetitive, noncoding sequences make up as much as half or more of the genomic content and are known to play essential roles in chromosome segregation during meiosis and mitosis, yet they evolve rapidly between closely related species. Research over the last several decades has revealed that satellite divergence can serve as a formidable reproductive barrier between sibling species. Here we highlight several key studies on Drosophila and other model organisms demonstrating deleterious effects of satellites and their rapid evolution on the structure and function of chromosomes in interspecies hybrids. These studies demonstrate that satellites can impact chromosomes at a number of different developmental stages and through distinct cellular mechanisms, including heterochromatin formation. These findings have important implications for how loci that cause postzygotic reproductive isolation are viewed.


2007 ◽  
Vol 97 (8) ◽  
pp. 892-899 ◽  
Author(s):  
Khalid Amari ◽  
Lorenzo Burgos ◽  
Vicente Pallas ◽  
María Amelia Sanchez-Pina

The route of infection and the pattern of distribution of Prunus necrotic ringspot virus (PNRSV) in apricot pollen were studied. PNRSV was detected both within and on the surface of infected pollen grains. The virus invaded pollen during its early developmental stages, being detected in pollen mother cells. It was distributed uniformly within the cytoplasm of uni- and bicellular pollen grains and infected the generative cell. In mature pollen grains, characterized by their triangular shape, the virus was located mainly at the apertures, suggesting that PNRSV distribution follows the same pattern as the cellular components required for pollen tube germination and cell wall tube synthesis. PNRSV also was localized inside pollen tubes, especially in the growth zone. In vitro experiments demonstrated that infection with PNRSV decreases the germination percentage of pollen grains by more than half and delays the growth of pollen tubes by ≈24 h. However, although PNRSV infection affected apricot pollen grain performance during germination, the presence of the virus did not completely prevent fertilization, because the infected apricot pollen tubes, once germinated, were able to reach the apricot embryo sacs, which, in the climatic conditions of southeastern Spain, mature later than in other climates. Thus, infected pollen still could play an important role in the vertical transmission of PNRSV in apricot.


1986 ◽  
Vol 64 (11) ◽  
pp. 2425-2429 ◽  
Author(s):  
Gregory Mitchell Kelly ◽  
Erwin Huebner

Embryonic development of the hemipteran Rhodnius prolixus is perturbed by fenoxycarb (Ro 13.5223, Dr. R. Maag Ltd.), a non-neurotoxic insect growth regulator. Degree of perturbation is dependent on dose applied and embryonic stage at application time. Day 5 embryos were the most sensitive over a broad dose range. Treatment on day 8 had little effect, with normal hatching occurring 1 week later. Three developmental stages were most sensitive to perturbation: katatrepsis, dorsal closure, and eclosion. Katatrepsis, which normally occurs 168 h postoviposition, was the stage most prominently affected, suggesting that fenoxycarb interferes with basic mechanisms underlying this morphogenetic movement. Dorsal closure was the second most sensistive stage, the defect being characterized by embryos failing to completely enclose the yolk. Embryos receiving very low doses successfully completed katatrepsis and dorsal closure but were unable to hatch. Results demonstrate that fenozycarb may be a useful experimental tool for examining the normal cellular mechanisms of insect embryogenesis.


1937 ◽  
Vol 51 (606) ◽  
pp. 524-529 ◽  
Author(s):  
Nobuhide Suita
Keyword(s):  

2017 ◽  
Vol 131 (10) ◽  
pp. 981-990 ◽  
Author(s):  
Jay C. Jha ◽  
Anna M.D. Watson ◽  
Geetha Mathew ◽  
Lisanne C. de Vos ◽  
Karin Jandeleit-Dahm

Oxidative stress is a consequence of up-regulation of pro-oxidant enzyme-induced reactive oxygen species (ROS) production and concomitant depletion of antioxidants. Elevated levels of ROS act as an intermediate and are the common denominator for various diseases including diabetes-associated macro-/micro-vascular complications and hypertension. A range of enzymes are capable of generating ROS, but the pro-oxidant enzyme family, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs), are the only enzymes known to be solely dedicated to ROS generation in the vascular tissues, kidney, aortas and eyes. While there is convincing evidence for a role of NOX1 in vascular and eye disease and for NOX4 in renal injury, the role of NOX5 in disease is less clear. Although NOX5 is highly up-regulated in humans in disease, it is absent in rodents. Thus, so far it has not been possible to study NOX5 in traditional mouse or rat models of disease. In the present review, we summarize and critically analyse the emerging evidence for a pathophysiological role of NOX5 in disease including the expression, regulation and molecular and cellular mechanisms which have been demonstrated to be involved in NOX5 activation.


Sign in / Sign up

Export Citation Format

Share Document