scholarly journals Garlic Volatile Diallyl Disulfide Induced Cucumber Resistance to Downy Mildew

2021 ◽  
Vol 22 (22) ◽  
pp. 12328
Author(s):  
Fan Yang ◽  
Hui Wang ◽  
Chengchen Zhi ◽  
Birong Chen ◽  
Yujie Zheng ◽  
...  

Allicin compositions in garlic are used widely as fungicides in modern agriculture, in which diallyl disulfide (DADS) is a major compound. Downy mildew, caused by Pseudoperonospora cubensis (P. cubensis), is one of the most destructive diseases and causes severe yield losses in cucumbers. To explore the potential mechanism of DADS-induced cucumber resistance to downy mildew, cucumber seedlings were treated with DADS and then inoculated with P. cubensis at a 10-day interval. Symptom observation showed that DADS significantly induced cucumber resistance to downy mildew. Furthermore, both lignin and H2O2 were significantly increased by DADS treatment to responding P. cubensis infection. Simultaneously, the enzyme activities of peroxidase (POD) in DADS-treated seedlings were significantly promoted. Meanwhile, both the auxin (IAA) and salicylic acid (SA) contents were increased, and their related differentially expressed genes (DEGs) were up-regulated when treated with DADS. Transcriptome profiling showed that many DEGs were involved in the biological processes of defense responses, in which DEGs on the pathways of ‘phenylpropanoid biosynthesis’, ‘phenylalanine metabolism’, ‘MAPK signaling’, and ‘plant hormone signal transduction’ were significantly up-regulated in DADS-treated cucumbers uninoculated with the pathogen. Based on the results of several physiological indices and transcriptomes, a potential molecular mechanism of DADS-induced cucumber resistance to downy mildew was proposed and discussed. The results of this study might give new insight into the exploration of the induced resistance mechanism of cucumber to downy mildew and provide useful information for the subsequent mining of resistance genes in cucumber.

PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254669
Author(s):  
Lingdong Meng ◽  
Xiaomeng Zhang ◽  
Lina Wang ◽  
Haoyue Liu ◽  
Yihang Zhao ◽  
...  

Caucasian clover is the only perennial herb of the genus Leguminous clover with underground rhizomes. However, we know very little about its development process and mechanism. Transcriptome studies were conducted on the roots of Caucasian clover without a rhizome (NR) at the young seedling stage and the fully developed rhizome, including the root neck (R1), main root (R2), horizontal root (R3), and rhizome bud (R4), of the tissues in the mature phase. Compared with the rhizome in the mature phase, NR had 893 upregulated differentially expressed genes (DEGs), most of which were enriched in ‘phenylpropanoid biosynthesis’, ‘phenylalanine metabolism’, ‘DNA replication’ and ‘biosynthesis of amino acids’. A higher number of transcription factors (AP2/ERF, C2H2 and FAR1) were found in NR. There were highly expressed genes for R4, such as auxin response factor SAUR, galacturonosyltransferase (GAUT), and sucrose synthase (SUS). Phenylpropanoids are very important for the entire process of rhizome development. We drew a cluster heat map of genes related to the phenylpropanoid biosynthesis pathway, in which the largest number of genes belonged to COMT, and most of them were upregulated in R4.


2020 ◽  
Vol 11 ◽  
Author(s):  
Tingting Ding ◽  
Weizhen Zhang ◽  
Yingde Li ◽  
Tingyu Duan

Colletotrichum lentis Damm causes anthracnose in Vicia sativa L, otherwise known as common vetch. It was first reported in China in 2019. This study evaluates the effects of the arbuscular mycorrhizal (AM) fungus Sieverdingia tortuosa (N.C. Schenck & G.S. Sm.) Błaszk., Niezgoda, & B.T. Goto on growth and disease severity in common vetch. Our main finding is that the AM fungus increased root biomass and reduced anthracnose severity of common vetch. Responses correlated with defense, such as chitinase activity, polyphenol oxidase (PPO) activity, the concentrations of jasmonic acid and proline, and the expression of resistance-related genes (e.g., upregulated “signal transduction,” “MAPK signaling pathway,” “chitinase activity,” “response to stress,” and the KEGG pathways “phenylpropanoid biosynthesis,” “MAPK signaling pathways,” and “plant-pathogen interactions”), were also affected These findings provide insight into the mechanism by which this AM fungus regulates the defense response of common vetch to C. lentis.


2019 ◽  
Vol 10 (2) ◽  
pp. 623-634 ◽  
Author(s):  
Yanfeng Duan ◽  
Shaoguang Duan ◽  
Miles R. Armstrong ◽  
Jianfei Xu ◽  
Jiayi Zheng ◽  
...  

Late blight, caused by Phytophthora infestans (P. infestans), is a devastating disease in potato worldwide. Our previous study revealed that the Solanum andigena genotype 03112-233 is resistant to P. infestans isolate 90128, but susceptible to the super race isolate, CN152. In this study, we confirmed by diagnostic resistance gene enrichment sequencing (dRenSeq) that the resistance of 03112-233 toward 90128 is most likely based on a distinct new R gene(s). To gain an insight into the mechanism that governs resistance or susceptibility in 03112-223, comparative transcriptomic profiling analysis based on RNAseq was initiated. Changes in transcription at two time points (24 h and 72 h) after inoculation with isolates 90128 or CN152 were analyzed. A total of 8,881 and 7,209 genes were differentially expressed in response to 90128 and CN152, respectively, and 1,083 differentially expressed genes (DEGs) were common to both time points and isolates. A substantial number of genes were differentially expressed in an isolate-specific manner with 3,837 genes showing induction or suppression following infection with 90128 and 2,165 genes induced or suppressed after colonization by CN152. Hierarchical clustering analysis suggested that isolates with different virulence profiles can induce different defense responses at different time points. Further analysis revealed that the compatible interaction caused higher induction of susceptibility genes such as SWEET compared with the incompatible interaction. The salicylic acid, jasmonic acid, and abscisic acid mediated signaling pathways were involved in the response against both isolates, while ethylene and brassinosteroids mediated defense pathways were suppressed. Our results provide a valuable resource for understanding the interactions between P. infestans and potato.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chantal Wingerter ◽  
Birgit Eisenmann ◽  
Patricia Weber ◽  
Ian Dry ◽  
Jochen Bogs

Abstract Background The high susceptibility of European grapevine cultivars (Vitis vinifera) to downy mildew (Plasmopara viticola) leads to the intensive use of fungicides in viticulture. To reduce this input, breeding programs have introgressed resistance loci from wild Vitis species into V. vinifera, resulting in new fungus-resistant grapevine cultivars (FRC). However, little is known about how these different resistance loci confer resistance and what the potential reduction in fungicide applications are likely to be if these FRCs are deployed. To ensure a durable and sustainable resistance management and breeding, detailed knowledge about the different defense mechanisms mediated by the respective Rpv (Resistance to P. viticola) resistance loci is essential. Results A comparison of the resistance mechanisms mediated by the Rpv3–1, Rpv10 and/or Rpv12-loci revealed an early onset of programmed cell death (PCD) at 8 hours post infection (hpi) in Rpv12-cultivars and 12 hpi in Rpv10-cultivars, whereas cell death was delayed in Rpv3-cultivars and was not observed until 28 hpi. These temporal differences correlated with an increase in the trans-resveratrol level and the formation of hydrogen peroxide shortly before onset of PCD. The differences in timing of onset of Rpv-loci specific defense reactions following downy mildew infection could be responsible for the observed differences in hyphal growth, sporulation and cultivar-specific susceptibility to this pathogen in the vineyard. Hereby, Rpv3- and Rpv12/Rpv3-cultivars showed a potential for a significant reduction of fungicide applications, depending on the annual P. viticola infection pressure and the Rpv-loci. Furthermore, we report on the discovery of a new P. viticola isolate that is able to overcome both Rpv3- and Rpv12-mediated resistance. Conclusion This study reveals that differences in the timing of the defense reaction mediated by the Rpv3-, Rpv10- and Rpv12-loci, result in different degrees of natural resistance to downy mildew in field. Vineyard trials demonstrate that Rpv12/Rpv3- and Rpv3-cultivars are a powerful tool to reduce the dependence of grape production on fungicide applications. Furthermore, this study indicates the importance of sustainable breeding and plant protection strategies based on resistant grapevine cultivars to reduce the risk of new P. viticola isolates that are able to overcome the respective resistance mechanism.


Agrotek ◽  
2018 ◽  
Vol 2 (6) ◽  
Author(s):  
Cipta Meliala ◽  
Felicity Fear ◽  
Denis Tourvieille de Labrouhe

Downy mildew symptoms caused by Plasmopara halstedii encountered in sunflower plantation are varied. This variation may be related to the resistance mechanism presented by plant to the invasion of the fungus. Our objectives were firstly is to evaluate symptom development after fungus race 710 inoculation on some vegetative stage of susceptible hybrid. Second objective is to evaluate the reaction some sunflower genotypes after fungus inoculation. The study was conducted under controlled conditions or under netting cages in the field. The development of downy mildew symptoms were affected by all factors studied. Shoot inoculation may present a good method to produce downy mildew symptom similar to the natural infection. Downy mildew symptom progression may be used to screen a genotype with a horizontal resistance.


2021 ◽  
Vol 81 ◽  
pp. 102246
Author(s):  
Zhong-li Liu ◽  
Shuai Wang ◽  
Xue-peng Cai ◽  
Qiao-ying Zeng

Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1910
Author(s):  
Bailey Engle ◽  
Molly Masters ◽  
Jane Ann Boles ◽  
Jennifer Thomson

Fat deposition is important to carcass value and some palatability characteristics. Carcasses with higher USDA quality grades produce more value for producers and processors in the US system and are more likely to have greater eating satisfaction. Using genomics to identify genes impacting marbling deposition provides insight into muscle biochemistry that may lead to ways to better predict fat deposition, especially marbling and thus quality grade. Hereford steers (16) were managed the same from birth through harvest after 270 days on feed. Samples were obtained for tenderness and transcriptome profiling. As expected, steaks from Choice carcasses had a lower shear force value than steaks from Select carcasses; however, steaks from Standard carcasses were not different from steaks from Choice carcasses. A significant number of differentially expressed (DE) genes was observed in the longissimus lumborum between Choice and Standard carcass RNA pools (1257 genes, p < 0.05), but not many DE genes were observed between Choice and Select RNA pools. Exploratory analysis of global muscle tissue transcriptome from Standard and Choice carcasses provided insight into muscle biochemistry, specifically the upregulation of extracellular matrix development and focal adhesion pathways and the downregulation of RNA processing and metabolism in Choice versus Standard. Additional research is needed to explore the function and timing of gene expression changes.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yu Qiao ◽  
Qiming Cheng ◽  
Yutong Zhang ◽  
Wei Yan ◽  
Fengyan Yi ◽  
...  

Abstract Background Sainfoin (Onobrychis viciifolia Scop) is not only a high-quality legume forage, but also a nectar-producing plant. Therefore, the flower color of sainfoin is an important agronomic trait, but the factors affecting its flower phenotype are still unclear. To gain insights into the regulatory networks associated with metabolic pathways of coloration compounds (flavonoids or anthocyanins) and identify the key genes, we conducted a comprehensive analysis of the phenotype, metabolome and transcriptome of WF and AF of sainfoin. Results Delphinidin, petunidin and malvidin derivatives were the main anthocyanin compounds in the AF of sainfoin. These substances were not detected in the WF of sainfoin. The transcriptomes of WF and AF in sainfoin at the S1 and S3 stages were obtained using the Illumina HiSeq4000 platform. Overall, 10,166 (4273 upregulated and 5893 downregulated) and 15,334 (8174 upregulated and 7160 downregulated) DEGs were identified in flowers at S1 and S3 stages, respectively (WF-VS-AF). KEGG pathway annotations showed that 6396 unigenes were annotated to 120 pathways and contained 866 DEGs at S1 stages, and 6396 unigenes were annotated to 131 pathways and included 1546 DEGs at the S3 stage. Nine DEGs belonging to the “flavonoid biosynthesis”and “phenylpropanoid biosynthesis” pathways involved in flower color formation were identified and verified by RT-qPCR analyses. Among these DEGs, 4CL3, FLS, ANS, CHS, DFR and CHI2 exhibited downregulated expression, and F3H exhibited upregulated expression in the WF compared to the AF, resulting in a decrease in anthocyanin synthesis and the formation of WF in sainfoin. Conclusions This study is the first to use transcriptome technology to study the mechanism of white flower formation in sainfoin. Our transcriptome data will be a great enrichment of the genetic information for sainfoin. In addition, the data presented herein will provide valuable molecular information for genetic breeding and provide insight into the future study of flower color polymorphisms in sainfoin.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Garima Bhatia ◽  
Santosh K. Upadhyay ◽  
Anuradha Upadhyay ◽  
Kashmir Singh

Abstract Background Long non-coding RNAs (lncRNAs) are regulatory transcripts of length > 200 nt. Owing to the rapidly progressing RNA-sequencing technologies, lncRNAs are emerging as considerable nodes in the plant antifungal defense networks. Therefore, we investigated their role in Vitis vinifera (grapevine) in response to obligate biotrophic fungal phytopathogens, Erysiphe necator (powdery mildew, PM) and Plasmopara viticola (downy mildew, DM), which impose huge agro-economic burden on grape-growers worldwide. Results Using computational approach based on RNA-seq data, 71 PM- and 83 DM-responsive V. vinifera lncRNAs were identified and comprehensively examined for their putative functional roles in plant defense response. V. vinifera protein coding sequences (CDS) were also profiled based on expression levels, and 1037 PM-responsive and 670 DM-responsive CDS were identified. Next, co-expression analysis-based functional annotation revealed their association with gene ontology (GO) terms for ‘response to stress’, ‘response to biotic stimulus’, ‘immune system process’, etc. Further investigation based on analysis of domains, enzyme classification, pathways enrichment, transcription factors (TFs), interactions with microRNAs (miRNAs), and real-time quantitative PCR of lncRNAs and co-expressing CDS pairs suggested their involvement in modulation of basal and specific defense responses such as: Ca2+-dependent signaling, cell wall reinforcement, reactive oxygen species metabolism, pathogenesis related proteins accumulation, phytohormonal signal transduction, and secondary metabolism. Conclusions Overall, the identified lncRNAs provide insights into the underlying intricacy of grapevine transcriptional reprogramming/post-transcriptional regulation to delay or seize the living cell-dependent pathogen growth. Therefore, in addition to defense-responsive genes such as TFs, the identified lncRNAs can be further examined and leveraged to candidates for biotechnological improvement/breeding to enhance fungal stress resistance in this susceptible fruit crop of economic and nutritional importance.


2015 ◽  
Vol 35 (3) ◽  
pp. 561-571 ◽  
Author(s):  
Wenxian Liu ◽  
Zhengshe Zhang ◽  
Shuangyan Chen ◽  
Lichao Ma ◽  
Hucheng Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document