scholarly journals The Influence of UV Varnishes on the Content of Cysteine and Methionine in Women Nail Plates—Chromatographic Studies

2021 ◽  
Vol 22 (22) ◽  
pp. 12447
Author(s):  
Kamila Borowczyk ◽  
Rafał Głowacki

The main purpose of this work was to determine if the use of hybrid nail polishes causes changes in concentration of the most important sulfur amino acids that build nail plate structures, cysteine and methionine. We found that the average contents of cysteine and methionine in studied samples before the use of hybrid manicure were 1275.3 ± 145.9 nmol mg−1 and 111.7 ± 23.8 nmol mg−1, respectively. After six months of hybrid manicure use, the average amount of these sulfur amino acids in studied samples were 22.1% and 36.5% lower in the case of cysteine and methionine, respectively. The average amounts of cysteine and methionine in nail plate samples after the use of hybrid manicures were 992.4 ± 96.2 nmol mg−1 and 70.9 ± 14.8 nmol mg−1, respectively. We also confirmed that in studied women the application of UV light varnishes reduced the thickness of the nail plate, from 0.50 ± 0.12 mm before to 0.46 ± 0.12 mm after the use of the hybrid manicure.

Nutrients ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 2609
Author(s):  
Han Fang ◽  
Kirsten P. Stone ◽  
Sujoy Ghosh ◽  
Laura A. Forney ◽  
Thomas W. Gettys

Dietary protein restriction and dietary methionine restriction (MR) produce a comparable series of behavioral, physiological, biochemical, and transcriptional responses. Both dietary regimens produce a similar reduction in intake of sulfur amino acids (e.g., methionine and cystine), and both diets increase expression and release of hepatic FGF21. Given that FGF21 is an essential mediator of the metabolic phenotype produced by both diets, an important unresolved question is whether dietary protein restriction represents de facto methionine restriction. Using diets formulated from either casein or soy protein with matched reductions in sulfur amino acids, we compared the ability of the respective diets to recapitulate the metabolic phenotype produced by methionine restriction using elemental diets. Although the soy-based control diets supported faster growth compared to casein-based control diets, casein-based protein restriction and soy-based protein restriction produced comparable reductions in body weight and fat deposition, and similar increases in energy intake, energy expenditure, and water intake. In addition, the prototypical effects of dietary MR on hepatic and adipose tissue target genes were similarly regulated by casein- and soy-based protein restriction. The present findings support the feasibility of using restricted intake of diets from various protein sources to produce therapeutically effective implementation of dietary methionine restriction.


Animals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2106
Author(s):  
Fernanda Lima de Souza Castro ◽  
Woo K. Kim

Amino acids such as arginine, methionine, and cysteine are the precursors of essential molecules that regulate growth and health, being classified as functional amino acids. This review describes the metabolism of arginine and the sulfur amino acids and how they modulate, directly or indirectly, different tissues. Emphasis is placed on their effects in supporting health during challenging conditions, such as heat stress and Eimeria infection. The use of arginine has been shown to reduce abdominal fat pad in ducks and increase lean tissue and bone mineral density in broilers. Additionally, the sulfur amino acids have been shown to improve bone development and are beneficial during heat stress. The use of L-methionine increased the cortical and trabecular bone mineral densities, in laying hens. Moreover, the dietary inclusion of these amino acids could reduce the damage caused by Eimeria spp. infection by regulating the antioxidant system and cell repair. Understanding how these amino acids can mitigate stressful conditions may provide us novel insights of their use as nutritional strategies to modulate the health status of chickens.


Author(s):  
Isabelle Papet ◽  
Didier Rémond ◽  
Dominique Dardevet ◽  
Laurent Mosoni ◽  
Sergio Polakof ◽  
...  

2018 ◽  
Vol 275 ◽  
pp. e136
Author(s):  
D. Djuric ◽  
T. Sobot ◽  
A. Djuric ◽  
V. Jakovljevic ◽  
T. Nikolic-Turnic ◽  
...  

1999 ◽  
Vol 277 (1) ◽  
pp. E144-E153 ◽  
Author(s):  
Deborah L. Bella ◽  
Christine Hahn ◽  
Martha H. Stipanuk

To determine the role of nonsulfur vs. sulfur amino acids in regulation of cysteine metabolism, rats were fed a basal diet or diets supplemented with a mixture of nonsulfur amino acids (AA), sulfur amino acids (SAA), or both for 3 wk. Hepatic cysteine-sulfinate decarboxylase (CSDC), cysteine dioxygenase (CDO), and γ-glutamylcysteine synthetase (GCS) activity, concentration, and mRNA abundance were measured. Supplementation with AA alone had no effect on any of these measures. Supplementation of the basal diet with SAA, with or without AA, resulted in a higher CDO concentration (32–45 times basal), a lower CSDC mRNA level (49–64% of basal), and a lower GCS-heavy subunit mRNA level (70–76%). The presence of excess SAA and AA together resulted in an additional type of regulation: a lower specific activity of all three enzymes was observed in rats fed diets with an excess of AA and SAA. Both SAA and AA played a role in regulation of these three enzymes of cysteine metabolism, but SAA had the dominant effects, and effects of AA were not observed in the absence of SAA.


Sign in / Sign up

Export Citation Format

Share Document