scholarly journals Early-Life Adversity Leaves Its Imprint on the Oral Microbiome for More Than 20 Years and Is Associated with Long-Term Immune Changes

2021 ◽  
Vol 22 (23) ◽  
pp. 12682
Author(s):  
Eleftheria G. Charalambous ◽  
Sophie B. Mériaux ◽  
Pauline Guebels ◽  
Claude P. Muller ◽  
Fleur A. D. Leenen ◽  
...  

The early-life microbiome (ELM) interacts with the psychosocial environment, in particular during early-life adversity (ELA), defining life-long health trajectories. The ELM also plays a significant role in the maturation of the immune system. We hypothesised that, in this context, the resilience of the oral microbiomes, despite being composed of diverse and distinct communities, allows them to retain an imprint of the early environment. Using 16S amplicon sequencing on the EpiPath cohort, we demonstrate that ELA leaves an imprint on both the salivary and buccal oral microbiome 24 years after exposure to adversity. Furthermore, the changes in both communities were associated with increased activation, maturation, and senescence of both innate and adaptive immune cells, although the interaction was partly dependent on prior herpesviridae exposure and current smoking. Our data suggest the presence of multiple links between ELA, Immunosenescence, and cytotoxicity that occur through long-term changes in the microbiome.

2019 ◽  
Vol 222 (6) ◽  
pp. jeb187039 ◽  
Author(s):  
David J. Walker ◽  
Cédric Zimmer ◽  
Maria Larriva ◽  
Susan D. Healy ◽  
Karen A. Spencer

2016 ◽  
Vol 28 (9) ◽  
pp. 1317-1329 ◽  
Author(s):  
J. E. Medland ◽  
C. S. Pohl ◽  
L. L. Edwards ◽  
S. Frandsen ◽  
K. Bagley ◽  
...  

2017 ◽  
Vol 284 (1853) ◽  
pp. 20170222 ◽  
Author(s):  
Gabriel Pigeon ◽  
Marco Festa-Bianchet ◽  
Fanie Pelletier

Cohort effects can be a major source of heterogeneity and play an important role in population dynamics. Silver-spoon effects, when environmental quality at birth improves future performance regardless of the adult environment, can induce strong lagged responses on population growth. Alternatively, the external predictive adaptive response (PAR) hypothesis predicts that organisms will adjust their developmental trajectory and physiology during early life in anticipation of expected adult conditions but has rarely been assessed in wild species. We used over 40 years of detailed individual monitoring of bighorn ewes ( Ovis canadensis ) to quantify long-term cohort effects on survival and reproduction. We then tested both the silver-spoon and the PAR hypotheses. Cohort effects involved a strong interaction between birth and current environments: reproduction and survival were lowest for ewes that were born and lived at high population densities. This interaction, however, does not support the PAR hypothesis because individuals with matching high-density birth and adult environments had reduced fitness. Instead, individuals born at high density had overall lower lifetime fitness suggesting a silver-spoon effect. Early-life conditions can induce long-term changes in fitness components, and their effects on cohort fitness vary according to adult environment.


2020 ◽  
Author(s):  
Cédric Girard-Buttoz ◽  
Patrick J. Tkaczynski ◽  
Liran Samuni ◽  
Pawel Fedurek ◽  
Cristina Gomes ◽  
...  

AbstractIn mammals, early life adversity negatively affects survival and reproductive success. A key causal mechanism is proposed by the biological embedding model which posits that adversity experienced early in life has deleterious consequences on individual physiology across the lifespan. In particular, early life adversity is expected to be a severe stressor leading to long-term alteration of the hypothalamic pituitary adrenal (HPA) axis activity. Here we tested this idea by assessing whether, as in humans, maternal loss had short and long-term impacts on orphan chimpanzee urinary cortisol levels and diurnal urinary cortisol slopes, as an indicator of the HPA axis functioning. We used 18 years of data on 50 immature and 28 mature male wild chimpanzees belonging to four communities in Taï National Park, Ivory Coast. Immature orphans who experienced early maternal loss had diurnal cortisol slopes characterised by higher early morning and late afternoon cortisol levels indicative of high activation of the HPA axis. Recently orphaned immatures had higher cortisol levels than other immatures, possibly reflecting social and nutritional stress. However, unlike in humans, we did not find significantly different cortisol profiles in orphan and non-orphan adult male chimpanzees. Our study highlights that long-term alteration of stress physiology related to early life adversity may not be viable in some wild animal populations and/or that chimpanzees, as humans, may have access to mechanisms that buffer this physiological stress, such as adoption. Our results suggest that biological embedding of altered HPA axis function is unlikely to be a mechanism contributing to the demonstrated long-term fitness consequences of maternal loss, such as reduced reproductive success, in wild long-lived mammals.


2019 ◽  
Vol 87 (6) ◽  
Author(s):  
Sreenatha Kirakodu ◽  
Jin Chen ◽  
Janis Gonzalez Martinez ◽  
Octavio A. Gonzalez ◽  
Jeffrey Ebersole

ABSTRACT This investigation compared the microbiomes colonizing teeth during the initiation, progression, and resolution of periodontitis in nonhuman primates (Macaca mulatta) at different ages. Subgingival plaque samples were collected at baseline; 0.5, 1, and 3 months following ligature-induced periodontitis; and following naturally occurring disease resolution at 5 months. Samples were analyzed using 16S amplicon sequencing to identify bacterial profiles across age groups: young (<3 years of age), adolescent (3 to 7 years), adult (12 to 15 years), and aged (17 to 23 years). α-Diversity of the microbiomes was greater in the adult/aged samples than in the young/adolescent samples. β-Diversity of the samples demonstrated clear age group differences, albeit individual variation in microbiomes between animals within the age categories was noted. Phylum distributions differed between the young/adolescent animals and the adult/aged animals at each of the time points, showing an enrichment of the phyla Spirochetes, Fusobacteria, and Bacteroidetes associated with periodontitis. Major differences in the top 50 operational taxonomic units (OTUs) were noted in the young and adolescent microbiomes during initiation and progression postligation compared to the adult and aged animals. The proportions of a large number of species in the top 50 OTUs were lower at baseline and in resolved disease microbiomes in the young samples, while profiles in adolescent animals were more consistent with the disease microbiomes. Microbiome profiles for resolution for adults and aged animals appeared more resilient and generally maintained a pattern similar to that of disease. Use of the model can expand our understanding of the crucial interactions of the oral microbiome and host responses in periodontitis.


2019 ◽  
Vol 242 (1) ◽  
pp. T51-T68 ◽  
Author(s):  
Patrycja A Jazwiec ◽  
Deborah M Sloboda

It is well established that early life environmental signals, including nutrition, set the stage for long-term health and disease risk – effects that span multiple generations. This relationship begins early, in the periconceptional period and extends into embryonic, fetal and early infant phases of life. Now known as the Developmental Origins of Health and Disease (DOHaD), this concept describes the adaptations that a developing organism makes in response to early life cues, resulting in adjustments in homeostatic systems that may prove maladaptive in postnatal life, leading to an increased risk of chronic disease and/or the inheritance of risk factors across generations. Reproductive maturation and function is similarly influenced by early life events. This should not be surprising, since primordial germ cells are established early in life and thus vulnerable to early life adversity. A multitude of ‘modifying’ cues inducing developmental adaptations have been identified that result in changes in reproductive development and impairments in reproductive function. Many types of nutritional challenges including caloric restriction, macronutrient excess and micronutrient insufficiencies have been shown to induce early life adaptations that produce long-term reproductive dysfunction. Many pathways have been suggested to underpin these associations, including epigenetic reprogramming of germ cells. While the mechanisms still remain to be fully investigated, it is clear that a lifecourse approach to understanding lifetime reproductive function is necessary. Furthermore, investigations of the impacts of early life adversity must be extended to include the paternal environment, especially in epidemiological and clinical studies of offspring reproductive function.


2020 ◽  
Vol 99 (6) ◽  
pp. 746-757 ◽  
Author(s):  
J. Ebersole ◽  
S. Kirakodu ◽  
J. Chen ◽  
R. Nagarajan ◽  
O.A. Gonzalez

This investigation evaluated the relationship of the oral microbiome and gingival transcriptome in health and periodontitis in nonhuman primates ( Macaca mulatta). Subgingival plaque samples and gingival biopsies were collected from healthy sites and at sites undergoing ligature-induced periodontitis. Microbial samples were analyzed with 16S amplicon sequencing to identify bacterial profiles in young (3 to 7 y) and adult (12 to 23 y) animals. The gingival transcriptome was determined with a microarray analysis and focused on the expression level of 452 genes that are associated with the development of inflammation and innate and adaptive immune responses. Of the 396 total operational taxonomic units (OTUs) identified across the samples, 81.8% were detected in the young group and 99.5% in the adult group. Nevertheless, 58 of the OTUs composed 88% of the signal in adults, and 49 OTUs covered 91% of the OTU readouts in the young group. Correlation analyses between the microbiome members and specific gingival genes showed a high number of significant bacteria-gene correlations in the young healthy tissues, which decreased by 75% in diseased tissues. In contrast, these correlations increased by 2.5-fold in diseased versus healthy tissues of adult animals. Complexes of bacteria were delineated that related to specific sets of immune genes, differing in health and disease and in the young versus adult animals. The correlated gene profiles demonstrated selected pathway overrepresentation related to particular bacterial complexes. These results provide novel insights into microbiome changes with disease and the relationship of these changes to specific gene profiles and likely biologic activities occurring in healthy and diseased gingival tissues in this human-like periodontitis model.


Sign in / Sign up

Export Citation Format

Share Document