scholarly journals Glitazone Treatment Rescues Phenotypic Deficits in a Fly Model of Gaucher/Parkinson’s Disease

2021 ◽  
Vol 22 (23) ◽  
pp. 12740
Author(s):  
Oluwanifemi Shola-Dare ◽  
Shelby Bailess ◽  
Carlos C. Flores ◽  
William M. Vanderheyden ◽  
Jason R. Gerstner

Parkinson’s Disease (PD) is the most common movement disorder, and the strongest genetic risk factor for PD is mutations in the glucocerebrosidase gene (GBA). Mutations in GBA also lead to the development of Gaucher Disease (GD), the most common type of lysosomal storage disorder. Current therapeutic approaches fail to address neurological GD symptoms. Therefore, identifying therapeutic strategies that improve the phenotypic traits associated with GD/PD in animal models may provide an opportunity for treating neurological manifestations of GD/PD. Thiazolidinediones (TZDs, also called glitazones) are a class of compounds targeted for the treatment of type 2 diabetes, and have also shown promise for the treatment of neurodegenerative disease, including PD. Here, we tested the efficacy of glitazone administration during development in a fly GD model with deletions in the GBA homolog, dGBA1b (GBA1ΔTT/ΔTT). We observed an optimal dose of pioglitazone (PGZ) at a concentration of 1 μM that reduced sleep deficits, locomotor impairments, climbing defects, and restoration of normal protein levels of Ref(2)P, a marker of autophagic flux, in GBA1ΔTT/ΔTT mutant flies, compared to GBA1+/+ control flies. These data suggest that PGZ may represent a potential compound with which to treat GD/PD by improving function of lysosomal-autophagy pathways, a cellular process that removes misfolded or aggregated proteins.

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Tapan Behl ◽  
Gagandeep Kaur ◽  
Ovidiu Fratila ◽  
Camelia Buhas ◽  
Claudia Teodora Judea-Pusta ◽  
...  

AbstractCurrent therapies for Parkinson’s disease (PD) are palliative, of which the levodopa/carbidopa therapy remains the primary choice but is unable to modulate the progression of neurodegeneration. Due to the complication of such a multifactorial disorder and significant limitations of the therapy, numerous genetic approaches have been proved effective in finding out genes and mechanisms implicated in this disease. Following the observation of a higher frequency of PD in Gaucher’s disease (GD), a lysosomal storage condition, mutations of glycosylceramidase beta (GBA) encoding glucocerebrosidase (GCase) have been shown to be involved and have been explored in the context of PD. GBA mutations are the most common genetic risk factor of PD. Various studies have revealed the relationships between PD and GBA gene mutations, facilitating a better understanding of this disorder. Various hypotheses delineate that the pathological mutations of GBA minimize the enzymatic activity of GCase, which affects the proliferation and clearance of α-synuclein; this affects the lysosomal homeostasis, exacerbating the endoplasmic reticulum stress or encouraging the mitochondrial dysfunction. Identification of the pathological mechanisms underlying the GBA-associated parkinsonism (GBA + PD) advances our understanding of PD. This review based on current literature aims to elucidate various genetic and clinical characteristics correlated with GBA mutations and to identify the numerous pathological processes underlying GBA + PD. We also delineate the therapeutic strategies to interfere with the mutant GCase function for further improvement of the related α-synuclein–GCase crosstalks. Moreover, the various therapeutic approaches such as gene therapy, chaperone proteins, and histone deacetylase inhibitors for the treatment of GBA + PD are discussed.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 1751 ◽  
Author(s):  
Lucy M Collins ◽  
Janelle Drouin-Ouellet ◽  
Wei-Li Kuan ◽  
Timothy Cox ◽  
Roger A Barker

Background: Recently, the development of Parkinson’s disease (PD) has been linked to a number of genetic risk factors, of which the most common is glucocerebrosidase (GBA) mutations. Methods: We investigated PD and Gaucher Disease (GD) patient derived skin fibroblasts using biochemistry assays. Results: PD patient derived skin fibroblasts have normal glucocerebrosidase (GCase) activity, whilst patients with PD and GBA mutations have a selective deficit in GCase enzyme activity and impaired autophagic flux. Conclusions: This data suggests that only PD patients with a GBA mutation have altered GCase activity and autophagy, which may explain their more rapid clinical progression.


Brain ◽  
2019 ◽  
Vol 142 (9) ◽  
pp. 2845-2859 ◽  
Author(s):  
Jun Sung Lee ◽  
Kazuaki Kanai ◽  
Mari Suzuki ◽  
Woojin S Kim ◽  
Han Soo Yoo ◽  
...  

AbstractMutations in lysosomal genes increase the risk of neurodegenerative diseases, as is the case for Parkinson’s disease. Here, we found that pathogenic and protective mutations in arylsulfatase A (ARSA), a gene responsible for metachromatic leukodystrophy, a lysosomal storage disorder, are linked to Parkinson’s disease. Plasma ARSA protein levels were changed in Parkinson’s disease patients. ARSA deficiency caused increases in α-synuclein aggregation and secretion, and increases in α-synuclein propagation in cells and nematodes. Despite being a lysosomal protein, ARSA directly interacts with α-synuclein in the cytosol. The interaction was more extensive with protective ARSA variant and less with pathogenic ARSA variant than wild-type. ARSA inhibited the in vitro fibrillation of α-synuclein in a dose-dependent manner. Ectopic expression of ARSA reversed the α-synuclein phenotypes in both cell and fly models of synucleinopathy, the effects correlating with the extent of the physical interaction between these molecules. Collectively, these results suggest that ARSA is a genetic modifier of Parkinson’s disease pathogenesis, acting as a molecular chaperone for α-synuclein.


Brain ◽  
2020 ◽  
Vol 143 (4) ◽  
pp. 1190-1205 ◽  
Author(s):  
Yutaka Oji ◽  
Taku Hatano ◽  
Shin-Ichi Ueno ◽  
Manabu Funayama ◽  
Kei-ichi Ishikawa ◽  
...  

Abstract Recently, the genetic variability in lysosomal storage disorders has been implicated in the pathogenesis of Parkinson’s disease. Here, we found that variants in prosaposin (PSAP), a rare causative gene of various types of lysosomal storage disorders, are linked to Parkinson’s disease. Genetic mutation screening revealed three pathogenic mutations in the saposin D domain of PSAP from three families with autosomal dominant Parkinson’s disease. Whole-exome sequencing revealed no other variants in previously identified Parkinson’s disease-causing or lysosomal storage disorder-causing genes. A case-control association study found two variants in the intronic regions of the PSAP saposin D domain (rs4747203 and rs885828) in sporadic Parkinson’s disease had significantly higher allele frequencies in a combined cohort of Japan and Taiwan. We found the abnormal accumulation of autophagic vacuoles, impaired autophagic flux, altered intracellular localization of prosaposin, and an aggregation of α-synuclein in patient-derived skin fibroblasts or induced pluripotent stem cell-derived dopaminergic neurons. In mice, a Psap saposin D mutation caused progressive motor decline and dopaminergic neurodegeneration. Our data provide novel genetic evidence for the involvement of the PSAP saposin D domain in Parkinson’s disease.


F1000Research ◽  
2018 ◽  
Vol 6 ◽  
pp. 1751 ◽  
Author(s):  
Lucy M Collins ◽  
Janelle Drouin-Ouellet ◽  
Wei-Li Kuan ◽  
Timothy Cox ◽  
Roger A Barker

Background: Recently, the development of Parkinson’s disease (PD) has been linked to a number of genetic risk factors, of which the most common is glucocerebrosidase (GBA) mutations. Methods: We investigated PD and Gaucher Disease (GD) patient derived skin fibroblasts using biochemistry assays. Results: PD patient derived skin fibroblasts have normal glucocerebrosidase (GCase) activity, whilst patients with PD and GBA mutations have a selective deficit in GCase enzyme activity and impaired autophagic flux. Conclusions: This data suggests that only PD patients with a GBA mutation have altered GCase activity and autophagy, which may explain their more rapid clinical progression.


Author(s):  
Daniel Erskine ◽  
David Koss ◽  
Viktor I. Korolchuk ◽  
Tiago F. Outeiro ◽  
Johannes Attems ◽  
...  

AbstractAccumulation of the protein α-synuclein into insoluble intracellular deposits termed Lewy bodies (LBs) is the characteristic neuropathological feature of LB diseases, such as Parkinson’s disease (PD), Parkinson’s disease dementia (PDD) and dementia with LB (DLB). α-Synuclein aggregation is thought to be a critical pathogenic event in the aetiology of LB disease, based on genetic analyses, fundamental studies using model systems, and the observation of LB pathology in post-mortem tissue. However, some monogenic disorders not traditionally characterised as synucleinopathies, such as lysosomal storage disorders, iron storage disorders and mitochondrial diseases, appear disproportionately vulnerable to the deposition of LBs, perhaps suggesting the process of LB formation may be a result of processes perturbed as a result of these conditions. The present review discusses biological pathways common to monogenic disorders associated with LB formation, identifying catabolic processes, particularly related to lipid homeostasis, autophagy and mitochondrial function, as processes that could contribute to LB formation. These findings are discussed in the context of known mediators of α-synuclein aggregation, highlighting the potential influence of impairments to these processes in the aetiology of LB formation.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Ria Thomas ◽  
Elizabeth B. Moloney ◽  
Zachary K. Macbain ◽  
Penelope J. Hallett ◽  
Ole Isacson

AbstractLysosomal dysfunction is a central pathway associated with Parkinson’s disease (PD) pathogenesis. Haploinsufficiency of the lysosomal hydrolase GBA (encoding glucocerebrosidase (GCase)) is one of the largest genetic risk factors for developing PD. Deficiencies in the activity of the GCase enzyme have been observed in human tissues from both genetic (harboring mutations in the GBA gene) and idiopathic forms of the disease. To understand the mechanisms behind the deficits of lysosomal GCase enzyme activity in idiopathic PD, this study utilized a large cohort of fibroblast cells from control subjects and PD patients with and without mutations in the GBA gene (N370S mutation) (control, n = 15; idiopathic PD, n = 31; PD with GBA N370S mutation, n = 6). The current data demonstrates that idiopathic PD fibroblasts devoid of any mutations in the GBA gene also exhibit reduction in lysosomal GCase activity, similar to those with the GBA N370S mutation. This reduced GCase enzyme activity in idiopathic PD cells was accompanied by decreased expression of the GBA trafficking receptor, LIMP2, and increased ER retention of the GBA protein in these cells. Importantly, in idiopathic PD fibroblasts LIMP2 protein levels correlated significantly with GCase activity, which was not the case in control subjects or in genetic PD GBA N370S cells. In conclusion, idiopathic PD fibroblasts have decreased GCase activity primarily driven by altered LIMP2-mediated transport of GBA to lysosome and the reduced GCase activity exhibited by  the genetic GBA N370S derived PD fibroblasts occurs through a different mechanism.


ASN NEURO ◽  
2021 ◽  
Vol 13 ◽  
pp. 175909142110097
Author(s):  
Kui Cui ◽  
Fan Yang ◽  
Turan Tufan ◽  
Muhammad U. Raza ◽  
Yanqiang Zhan ◽  
...  

Dysfunction of the central noradrenergic and dopaminergic systems is the primary neurobiological characteristic of Parkinson’s disease (PD). Importantly, neuronal loss in the locus coeruleus (LC) that occurs in early stages of PD may accelerate progressive loss of dopaminergic neurons. Therefore, restoring the activity and function of the deficient noradrenergic system may be an important therapeutic strategy for early PD. In the present study, the lentiviral constructions of transcription factors Phox2a/2b, Hand2 and Gata3, either alone or in combination, were microinjected into the LC region of the PD model VMAT2 Lo mice at 12 and 18 month age. Biochemical analysis showed that microinjection of lentiviral expression cassettes into the LC significantly increased mRNA levels of Phox2a, and Phox2b, which were accompanied by parallel increases of mRNA and proteins of dopamine β-hydroxylase (DBH) and tyrosine hydroxylase (TH) in the LC. Furthermore, there was considerable enhancement of DBH protein levels in the frontal cortex and hippocampus, as well as enhanced TH protein levels in the striatum and substantia nigra. Moreover, these manipulations profoundly increased norepinephrine and dopamine concentrations in the striatum, which was followed by a remarkable improvement of the spatial memory and locomotor behavior. These results reveal that over-expression of these transcription factors in the LC improves noradrenergic and dopaminergic activities and functions in this rodent model of PD. It provides the necessary groundwork for the development of gene therapies of PD, and expands our understanding of the link between the LC-norepinephrine and dopamine systems during the progression of PD.


2017 ◽  
Vol 114 (40) ◽  
pp. 10773-10778 ◽  
Author(s):  
Seong Su Kang ◽  
Zhentao Zhang ◽  
Xia Liu ◽  
Fredric P. Manfredsson ◽  
Matthew J. Benskey ◽  
...  

BDNF/TrkB neurotrophic signaling is essential for dopaminergic neuronal survival, and the activities are reduced in the substantial nigra (SN) of Parkinson’s disease (PD). However, whether α-Syn (alpha-synuclein) aggregation, a hallmark in the remaining SN neurons in PD, accounts for the neurotrophic inhibition remains elusive. Here we show that α-Syn selectively interacts with TrkB receptors and inhibits BDNF/TrkB signaling, leading to dopaminergic neuronal death. α-Syn binds to the kinase domain on TrkB, which is negatively regulated by BDNF or Fyn tyrosine kinase. Interestingly, α-Syn represses TrkB lipid raft distribution, decreases its internalization, and reduces its axonal trafficking. Moreover, α-Syn also reduces TrkB protein levels via up-regulation of TrkB ubiquitination. Remarkably, dopamine’s metabolite 3,4-Dihydroxyphenylacetaldehyde (DOPAL) stimulates the interaction between α-Syn and TrkB. Accordingly, MAO-B inhibitor rasagiline disrupts α-Syn/TrkB complex and rescues TrkB neurotrophic signaling, preventing α-Syn–induced dopaminergic neuronal death and restoring motor functions. Hence, our findings demonstrate a noble pathological role of α-Syn in antagonizing neurotrophic signaling, providing a molecular mechanism that accounts for its neurotoxicity in PD.


Sign in / Sign up

Export Citation Format

Share Document