scholarly journals Zfhx3 Transcription Factor Represses the Expression of SCN5A Gene and Decreases Sodium Current Density (INa)

2021 ◽  
Vol 22 (23) ◽  
pp. 13031
Author(s):  
Marcos Rubio-Alarcón ◽  
Anabel Cámara-Checa ◽  
María Dago ◽  
Teresa Crespo-García ◽  
Paloma Nieto-Marín ◽  
...  

The ZFHX3 and SCN5A genes encode the zinc finger homeobox 3 (Zfhx3) transcription factor (TF) and the human cardiac Na+ channel (Nav1.5), respectively. The effects of Zfhx3 on the expression of the Nav1.5 channel, and in cardiac excitability, are currently unknown. Additionally, we identified three Zfhx3 variants in probands diagnosed with familial atrial fibrillation (p.M1260T) and Brugada Syndrome (p.V949I and p.Q2564R). Here, we analyzed the effects of native (WT) and mutated Zfhx3 on Na+ current (INa) recorded in HL-1 cardiomyocytes. ZFHX3 mRNA can be detected in human atrial and ventricular samples. In HL-1 cardiomyocytes, transfection of Zfhx3 strongly reduced peak INa density, while the silencing of endogenous expression augmented it (from −65.9 ± 8.9 to −104.6 ± 10.8 pA/pF; n ≥ 8, p < 0.05). Zfhx3 significantly reduced the transcriptional activity of human SCN5A, PITX2, TBX5, and NKX25 minimal promoters. Consequently, the mRNA and/or protein expression levels of Nav1.5 and Tbx5 were diminished (n ≥ 6, p < 0.05). Zfhx3 also increased the expression of Nedd4-2 ubiquitin-protein ligase, enhancing Nav1.5 proteasomal degradation. p.V949I, p.M1260T, and p.Q2564R Zfhx3 produced similar effects on INa density and time- and voltage-dependent properties in WT. WT Zfhx3 inhibits INa as a result of a direct repressor effect on the SCN5A promoter, the modulation of Tbx5 increasing on the INa, and the increased expression of Nedd4-2. We propose that this TF participates in the control of cardiac excitability in human adult cardiac tissue.

2013 ◽  
Vol 305 (8) ◽  
pp. H1213-H1221 ◽  
Author(s):  
Michael F. Sheets ◽  
Tiehua Chen ◽  
Dorothy A. Hanck

To determine the roles of the individual S4 segments in domains I and II to activation and inactivation kinetics of sodium current ( INa) in NaV1.5, we used a tethered biotin and avidin approach after a site-directed cysteine substitution was made in the second outermost Arg in each S4 (DI-R2C and DII-R2C). We first determined the fraction of gating charge contributed by the individual S4's to maximal gating current (Qmax), and found that the outermost Arg residue in each S4 contributed ∼19% to Qmax with minimal contributions by other arginines. Stabilization of the S4's in DI-R2C and DII-R2C was confirmed by measuring the expected reduction in Qmax. In DI-R2C, stabilization resulted in a decrease in peak INa of ∼45%, while its peak current-voltage ( I-V) and voltage-dependent Na channel availability (SSI) curves were nearly unchanged from wild type (WT). In contrast, stabilization of the DII-R2C enhanced activation with a negative shift in the peak I-V relationship by −7 mV and a larger −17 mV shift in the voltage-dependent SSI curve. Furthermore, its INa decay time constants and time-to-peak INa became more rapid than WT. An explanation for these results is that the depolarized conformation of DII-S4, but not DI-S4, affects the receptor for the inactivation particle formed by the interdomain linker between DIII and IV. In addition, the leftward shifts of both activation and inactivation and the decrease in Gmax after stabilization of the DII-S4 support previous studies that showed β-scorpion toxins trap the voltage sensor of DII in an activated conformation.


EP Europace ◽  
2021 ◽  
Vol 23 (Supplement_3) ◽  
Author(s):  
M O"reilly ◽  
L Sommerfeld ◽  
C O"shea ◽  
S Broadway-Stringer ◽  
S Kabir ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: Foundation. Main funding source(s): British Heart Foundation Leducq Foundation Background The point mutation M1875T in the SCN5A gene, which encodes the pore-forming α-subunit of the cardiac voltage-gated Na+ channel Nav1.5, has been associated with familial atrial fibrillation (AF), but its effects on atrial cardiomyocyte electrophysiology is unclear. Aim To investigate the effect of the point mutation M1875T on atrial electrophysiological parameters. Methods In a novel heterozygous knock-in murine model (Scn5a-M1875T+/-), whole-cell patch clamp electrophysiology was used to investigate Na+ currents in left atrial (LA) cardiomyocytes isolated from hearts of young adult mice (10-16 weeks). LA microelectrode and optical mapping recordings were used to study action potential (AP) characteristics. Cardiac size and function were measured by transthoracic echocardiography. Atrial Scn5a gene and Nav1.5 protein expression were assessed by Rt-PCR and Western blot. Results The Na+ current was increased in cardiomyocytes isolated from Scn5a-M1875T+/- LA (wildtype (WT) -22.7 ± 0.9 pA/pF (N = 14, n = 115); Scn5a-M1875T+/- -28.3 ± 1.1 pA/pF (N = 15, n = 117)). Scn5a-M1875T+/- intact isolated superfused LA had an elevated AP amplitude (100 ms pacing cycle length (PCL): WT 86.4 ± 0.9 mV (N = 8, n = 24); Scn5a-M1875T+/- 91.2 ± 0.7 mV (N = 8, n = 25)) and a faster peak upstroke velocity (100 ms PCL: WT 127.98 ± 3.28 mV/ms; Scn5a-M1875T+/- 142.80 ± 3.98 mV/ms). AP duration (APD) was not different apart from a small APD shortening at slow rates. Echocardiography revealed no difference in size and function at the age of investigation. Atrial Scn5a gene and Nav1.5 protein expression were comparable. When challenged with flecainide (1 µM), Scn5a-M1875T+/- LA showed less conduction slowing than WT (100 ms PCL: WT -10.43 ± 1.27 cm/s (N = 12); Scn5a-M1875T+/- -6.10 ± 1.34 cm/s (N = 12)).  5 µM flecainide caused significant increase in WT refractoriness (7/12 atria lost 1:1 capture at PCL ≤ 120 ms) compared to Scn5a-M1875T+/- (1/12). Conclusion(s): SCN5A point mutation M1875T increases the Na+ current in atrial cardiomyocytes and intact atria, leading to a faster AP upstroke and an attenuated response to flecainide. Abstract Figure 1: Current-Voltage relationship


2007 ◽  
Vol 97 (2) ◽  
pp. 1684-1704 ◽  
Author(s):  
Julian R. A. Wooltorton ◽  
Sophie Gaboyard ◽  
Karen M. Hurley ◽  
Steven D. Price ◽  
Jasmine L. Garcia ◽  
...  

Two kinds of sodium current ( INa) have been separately reported in hair cells of the immature rodent utricle, a vestibular organ. We show that rat utricular hair cells express one or the other current depending on age (between postnatal days 0 and 22, P0—P22), hair cell type (I, II, or immature), and epithelial zone (striola vs. extrastriola). The properties of these two currents, or a mix, can account for descriptions of INa in hair cells from other reports. The patterns of Na channel expression during development suggest a role in establishing the distinct synapses of vestibular hair cells of different type and epithelial zone. All type I hair cells expressed INa,1, a TTX-insensitive current with a very negative voltage range of inactivation (midpoint: −94 mV). INa,2 was TTX sensitive and had less negative voltage ranges of activation and inactivation (inactivation midpoint: −72 mV). INa,1 dominated in the striola at all ages, but current density fell by two-thirds after the first postnatal week. INa,2 was expressed by 60% of hair cells in the extrastriola in the first week, then disappeared. In the third week, all type I cells and about half of type II cells had INa,1; the remaining cells lacked sodium current. INa,1 is probably carried by NaV1.5 subunits based on biophysical and pharmacological properties, mRNA expression, and immunoreactivity. NaV1.5 was also localized to calyx endings on type I hair cells. Several TTX-sensitive subunits are candidates for INa,2.


1982 ◽  
Vol 80 (4) ◽  
pp. 485-497 ◽  
Author(s):  
J R Stimers ◽  
L Byerly

The effects of ruthenium red (RuR) were tested on the membrane currents of internally perfused, voltage-clamped nerve cell bodies from the snail Limnea stagnalis. Bath application of nanomolar concentrations of RuR produces a prolonged Na current that decays approximately 40 times slower than the normal Na current in these cells. The relationship between the reversal potential for the prolonged Na current and the intracellular concentration of Na+ agrees well with the constant-field equation, assuming a small permeability for Cs+. Because a strong correlation was found between the magnitude of the normal Na current and that of the prolonged Na current, it is concluded that the prolonged Na current flows through the normal Na channels. This conclusion is supported by the similar selectivities, voltage dependencies, and tetrodotoxin (TTX) sensitivities of these two currents. This action of RuR to slow the inactivation of the Na channel was not observed at concentrations below 1 nM, but was complete at 10 nM. When the concentration of RuR is increased to 0.1 mM, the Ca current in these cells is blocked; but at this high concentration RuR also reduces the outward voltage-dependent currents and resting membrane resistance. Therefore, RuR is not a good Ca blocker because of its lack of specificity. However, its action of slowing Na current inactivation is very specific and could prove to be useful in studying the inactivation of the Na channel.


1961 ◽  
Vol 45 (2) ◽  
pp. 317-330 ◽  
Author(s):  
Wolfgang Trautwein ◽  
Donald G. Kassebaum

Rhythmic activity in Purkinje fibers of sheep and in fibers of the rabbit sinus can be produced or enhanced when a constant depolarizing current is applied. When extracellular calcium is reduced successively, the required current strength is less, and eventually spontaneous beating occurs. These effects are believed due to an increase in steady-state sodium conductance. A significant hyperpolarization occurs in fibers of the rabbit sinus bathed in a sodium-free medium, suggesting an appreciable sodium conductance of the "resting" membrane. During diastole, there occurs a voltage-dependent and, to a smaller extent, time-dependent reduction in potassium conductance, and a pacemaker potential occurs as a result of a large resting sodium conductance. It is postulated that the mechanism underlying the spontaneous heart beat is a high resting sodium current in pacemaker tissue which acts as the generator of the heart beat when, after a regenerative repolarization, the decrease in potassium conductance during diastole reestablishes the condition of threshold.


1985 ◽  
Vol 86 (5) ◽  
pp. 739-762 ◽  
Author(s):  
G K Wang ◽  
G Strichartz

The effects of a neurotoxin, purified from the venom of the scorpion Leiurus quinquestriatus, on the ionic currents of toad single myelinated fibers were studied under voltage-clamp conditions. Unlike previous investigations using crude scorpion venom, purified Leiurus toxin II alpha at high concentrations (200-400 nM) did not affect the K currents, nor did it reduce the peak Na current in the early stages of treatment. The activation of the Na channel was unaffected by the toxin, the activation time course remained unchanged, and the peak Na current vs. voltage relationship was not altered. In contrast, Na channel inactivation was considerably slowed and became incomplete. As a result, a steady state Na current was maintained during prolonged depolarizations of several seconds. These steady state Na currents had a different voltage dependence from peak Na currents and appeared to result from the opening of previously inactivated Na channels. The opening kinetics of the steady state current were exponential and had rates approximately 100-fold slower than the normal activation processes described for transitions from the resting state to the open state. In addition, the dependence of the peak Na current on the potential of preceding conditioning pulses was also dramatically altered by toxin treatment; this parameter reached a minimal value near a membrane potential of -50 mV and then increased continuously to a "plateau" value at potentials greater than +50 mV. The amplitude of this plateau was dependent on toxin concentration, reaching a maximum value equal to approximately 50% of the peak current; voltage-dependent reversal of the toxin's action limits the amplitude of the plateauing effect. The measured plateau effect was half-maximum at a toxin concentration of 12 nM, a value quite similar to the concentration producing half of the maximum slowing of Na channel inactivation. The results of Hill plots for these actions suggest that one toxin molecule binds to one Na channel. Thus, the binding of a single toxin molecule probably both produces the steady state currents and slows the Na channel inactivation. We propose that Leiurus toxin inhibits the conversion of the open state to inactivated states in a voltage-dependent manner, and thereby permits a fraction of the total Na permeability to remain at membrane potentials where inactivation is normally complete.


2019 ◽  
Author(s):  
Daniel E. Hurtado ◽  
Javiera Jilberto ◽  
Grigory Panasenko

AbstractGap junctions are key mediators of the intercellular communication in cardiac tissue, and their function is vital to sustain normal cardiac electrical activity. Conduction through gap junctions strongly depends on the hemichannel arrangement and transjunctional voltage, rendering the intercellular conductance highly non-Ohmic. Despite this marked non-linear behavior, current tissue-level models of cardiac conduction are rooted on the assumption that gap-junctions conductance is constant (Ohmic), which results in inaccurate predictions of electrical propagation, particularly in the low junctional-coupling regime observed under pathological conditions. In this work, we present a novel non-Ohmic multiscale (NOM) model of cardiac conduction that is suitable for tissue-level simulations. Using non-linear homogenization theory, we develop a conductivity model that seamlessly upscales the voltage-dependent conductance of gap junctions, without the need of explicitly modeling gap junctions. The NOM model allows for the simulation of electrical propagation in tissue-level cardiac domains that accurately resemble that of cell-based microscopic models for a wide range of junctional coupling scenarios, recovering key conduction features at a fraction of the computational complexity. A unique feature of the NOM model is the possibility of upscaling the response of non-symmetric gap-junction conductance distributions, which result in conduction velocities that strongly depend on the direction of propagation, thus allowing to model the normal and retrograde conduction observed in certain regions of the heart. We envision that the NOM model will enable organ-level simulations that are informed by sub- and inter-cellular mechanisms, delivering an accurate and predictive in-silico tool for understanding the heart function.Author summaryThe heart relies on the propagation of electrical impulses that are mediated gap junctions, whose conduction properties vary depending on the transjunctional voltage. Despite this non-linear feature, current mathematical models assume that cardiac tissue behaves like an Ohmic (linear) material, thus delivering inaccurate results when simulated in a computer. Here we present a novel mathematical multiscale model that explicitly includes the non-Ohmic response of gap junctions in its predictions. Our results show that the proposed model recovers important conduction features modulated by gap junctions at a fraction of the computational complexity. This contribution represents an important step towards constructing computer models of a whole heart that can predict organ-level behavior in reasonable computing times.


2020 ◽  
Author(s):  
Abdesslam Chrachri

AbstractWhole-cell patch-clamp recordings from identified centrifugal neurons of the optic lobe in a slice preparation allowed the characterization of five voltage-dependent currents; two outward and three inward currents. The outward currents were; the 4-aminopyridine-sensitive transient potassium or A-current (IA), the TEA-sensitive sustained current or delayed rectifier (IK). The inward currents were; the tetrodotoxin-sensitive transient current or sodium current (INa). The second is the cobalt- and cadmium-sensitive sustained current which is enhanced by barium and blocked by the dihydropyridine antagonist, nifedipine suggesting that it could be the L-type calcium current (ICaL). Finally, another transient inward current, also carried by calcium, but unlike the L-type, this current is activated at more negative potentials and resembles the low-voltage-activated or T-type calcium current (ICaT) of other preparations.Application of the neuropeptide FMRFamide caused a significant attenuation to the peak amplitude of both sodium and sustained calcium currents without any apparent effect on the transient calcium current. Furthermore, FMRFamide also caused a reduction of both outward currents in these centrifugal neurons. The fact that FMRFamide reduced the magnitude of four of five characterized currents could suggest that this neuropeptide may act as a strong inhibitory agent on these neurons.SummaryFMRFamide modulate the ionic currents in identified centrifugal neurons in the optic lobe of cuttlefish: thus, FMRFamide could play a key role in visual processing of these animals.


Sign in / Sign up

Export Citation Format

Share Document