scholarly journals Calmodulin-Connexin Partnership in Gap Junction Channel Regulation-Calmodulin-Cork Gating Model

2021 ◽  
Vol 22 (23) ◽  
pp. 13055
Author(s):  
Camillo Peracchia ◽  
Lillian Mae Leverone Peracchia

In the past four decades numerous findings have indicated that gap junction channel gating is mediated by intracellular calcium concentrations ([Ca2+i]) in the high nanomolar range via calmodulin (CaM). We have proposed a CaM-based gating model based on evidence for a direct CaM role in gating. This model is based on the following: CaM inhibitors and the inhibition of CaM expression to prevent chemical gating. A CaM mutant with higher Ca2+ sensitivity greatly increases gating sensitivity. CaM co-localizes with connexins. Connexins have high-affinity CaM-binding sites. Connexin mutants paired to wild type connexins have a higher gating sensitivity, which is eliminated by the inhibition of CaM expression. Repeated trans-junctional voltage (Vj) pulses progressively close channels by the chemical/slow gate (CaM’s N-lobe). At the single channel level, the gate closes and opens slowly with on-off fluctuations. Internally perfused crayfish axons lose gating competency but recover it by the addition of Ca-CaM to the internal perfusion solution. X-ray diffraction data demonstrate that isolated gap junctions are gated at the cytoplasmic end by a particle of the size of a CaM lobe. We have proposed two types of CaM-driven gating: “Ca-CaM-Cork” and “CaM-Cork”. In the first, the gating involves Ca2+-induced CaM activation. In the second, the gating occurs without a [Ca2+]i rise.

2020 ◽  
Vol 21 (14) ◽  
pp. 4938 ◽  
Author(s):  
Camillo Peracchia

The Calmodulin-Cork gating model is based on evidence for the direct role of calmodulin (CaM) in channel gating. Indeed, chemical gating of cell-to-cell channels is sensitive to nanomolar cytosolic calcium concentrations [Ca2+]i. Calmodulin inhibitors and inhibition of CaM expression prevent chemical gating. CaMCC, a CaM mutant with higher Ca2+-sensitivity greatly increases chemical gating sensitivity (in CaMCC the NH2-terminal EF-hand pair (res. 9–76) is replaced by the COOH-terminal pair (res. 82–148). Calmodulin colocalizes with connexins. Connexins have high-affinity CaM binding sites. Several connexin mutants paired to wild-type connexins have a high gating sensitivity that is eliminated by inhibition of CaM expression. Repeated transjunctional voltage (Vj) pulses slowly and progressively close a large number of channels by the chemical/slow gate (CaM lobe). At the single-channel level, the chemical/slow gate closes and opens slowly with on-off fluctuations. The model proposes two types of CaM-driven gating: “Ca-CaM-Cork” and “CaM-Cork”. In the first, gating involves Ca2+-induced CaM-activation. In the second, gating takes place without [Ca2+]i rise. The Ca-CaM-Cork gating is only reversed by a return of [Ca2+]i to resting values, while the CaM-Cork gating is reversed by Vj positive at the gated side.


1998 ◽  
Vol 275 (5) ◽  
pp. C1384-C1390 ◽  
Author(s):  
Xiao Guang Wang ◽  
Camillo Peracchia

Connexin32 (Cx32) mutants were studied by double voltage clamp in Xenopus oocytes to determine the role of basic COOH-terminal residues in gap junction channel gating by CO2 and transjunctional voltage. Replacement of five arginines with N (5R/N) or T residues in the initial COOH-terminal domain (CT1) of Cx32 enhanced CO2 sensitivity. The positive charge, rather than the R residue per se, is responsible for the inhibitory role of CT1, because mutants replacing the five R residues with K (5R/K) or H (5R/H) displayed CO2 sensitivity comparable to that of wild-type Cx32. Mutants replacing R with N residues four at a time (4R/N) showed that CO2 sensitivity is strongly inhibited by R215 and mildly by R219, whereas R220, R223, and R224 may slightly increase sensitivity. Neither the 5R/N nor the 4R/N mutants differed in voltage sensitivity from wild-type Cx32. The possibility that inhibition of gating sensitivity results from electrostatic interactions between CT1 and the cytoplasmic loop is discussed as part of a model that envisions the cytoplasmic loop of Cx32 as a key element of chemical gating.


1991 ◽  
Vol 260 (3) ◽  
pp. C513-C527 ◽  
Author(s):  
D. C. Spray ◽  
M. Chanson ◽  
A. P. Moreno ◽  
R. Dermietzel ◽  
P. Meda

Gap junctions, dye coupling, and junctional conductance were studied in a cell line (WB) that is derived from rat liver and displays a phenotype similar to “oval” cells. In freeze-fracture replicas, two distinctive particle sizes were detected in gap junctional plaques. Immunocytochemical studies indicated punctate staining at membrane appositions using antibodies to connexin 43 and to a brain gap junction-associated antigen (34 kDa). No staining was observed using antibodies prepared against rat liver gap junction proteins (connexins 32 and 26). Pairs of WB cells were electrically and dye coupled. Junctional conductance (gj) between cell pairs averaged approximately 10 nS; occasionally, gj was low enough that unitary junctional conductances (gamma j) could be detected. Using a CsCl-containing electrode solution, distinctive gamma j values were recorded: approximately 20-30 pS, approximately 80-90 pS, and the sum of the other sizes. The largest gamma j events were apparently due to random coincident openings or closures of the smaller channels. Several treatments reduced gj. Frequency distributions of gamma j were unaltered by 2 mM halothane or 3.5 heptanol, but the sizes of intermediate and largest events were reduced slightly by 100 nM phorbol ester, and the relative frequency of the largest events was increased by 10 microM glutaraldehyde. We conclude that the distinctive gamma j values represent openings and closures of two distinct types of gap junction channels rather than substates of a single channel type; these unitary conductances may correspond to the dual immunoreactivity and to the two particle sizes seen in freeze fracture.


2000 ◽  
Vol 279 (6) ◽  
pp. H3076-H3088 ◽  
Author(s):  
Sylvia O. Suadicani ◽  
Monique J. Vink ◽  
David C. Spray

Focal mechanical stimulation of single neonatal mouse cardiac myocytes in culture induced intercellular Ca2+ waves that propagated with mean velocities of ∼14 μm/s, reaching ∼80% of the cells in the field. Deletion of connexin43 (Cx43), the main cardiac gap junction channel protein, did not prevent communication of mechanically induced Ca2+ waves, although the velocity and number of cells communicated by the Ca2+ signal were significantly reduced. Similar effects were observed in wild-type cardiac myocytes treated with heptanol, a gap junction channel blocker. Fewer cells were involved in intercellular Ca2+ signaling in both wild-type and Cx43-null cultures in the presence of suramin, a P2-receptor blocker; blockage was more effective in Cx43-null than in wild-type cells. Thus gap junction channels provide the main pathway for communication of slow intercellular Ca2+ signals in wild-type neonatal mouse cardiac myocytes. Activation of P2-receptors induced by ATP release contributes a secondary, extracellular pathway for transmission of Ca2+ signals. The importance of such ATP-mediated Ca2+ signaling would be expected to be enhanced under ischemic conditions, when release of ATP is increased and gap junction channels conductance is significantly reduced.


1995 ◽  
Vol 6 (12) ◽  
pp. 1707-1719 ◽  
Author(s):  
B R Kwak ◽  
M M Hermans ◽  
H R De Jonge ◽  
S M Lohmann ◽  
H J Jongsma ◽  
...  

Studies on physiological modulation of intercellular communication mediated by protein kinases are often complicated by the fact that cells express multiple gap junction proteins (connexins; Cx). Changes in cell coupling can be masked by simultaneous opposite regulation of the gap junction channel types expressed. We have examined the effects of activators and inhibitors of protein kinase A (PKA), PKC, and PKG on permeability and single channel conductance of gap junction channels composed of Cx45, Cx43, or Cx26 subunits. To allow direct comparison between these Cx, SKHep1 cells, which endogenously express Cx45, were stably transfected with cDNAs coding for Cx43 or Cx26. Under control conditions, the distinct types of gap junction channels could be distinguished on the basis of their permeability and single channel properties. Under various phosphorylating conditions, these channels behaved differently. Whereas agonists/antagonist of PKA did not affect permeability and conductance of all gap junction channels, variable changes were observed under PKC stimulation. Cx45 channels exhibited an additional conductance state, the detection of the smaller conductance states of Cx43 channels was favored, and Cx26 channels were less often observed. In contrast to the other kinases, agonists/antagonist of PKG affected permeability and conductance of Cx43 gap junction channels only. Taken together, these results show that distinct types of gap junction channels are differentially regulated by similar phosphorylating conditions. This differential regulation may be of physiological importance during modulation of cell-to-cell communication of more complex cell systems.


1997 ◽  
Vol 29 (4-5) ◽  
pp. 213-218
Author(s):  
C. Peracchia ◽  
X. G. Wang ◽  
L. M. Peracchia

2006 ◽  
Vol 291 (6) ◽  
pp. C1366-C1376 ◽  
Author(s):  
H.-Z. Wang ◽  
Peter R. Brink ◽  
George J. Christ

Several independent lines of investigation indicate that intercellular communication through gap junctions modulates bladder physiology and, moreover, that altered junctional communication may contribute to detrusor overactivity. However, as far as we are aware, there are still no direct recordings of gap junction-mediated intercellular currents between human or rat detrusor myocytes. Northern and Western blots were used to identify connexin expression in frozen human bladder tissue and short-term cultured human detrusor myocytes. Double whole cell patch (DWCP) recording revealed that human detrusor myocyte cell pairs were well coupled with an average junctional conductance of 6.5 ± 4.6 nS (ranging from 0.1 to 15 nS, n = 22 cell pairs). Macroscopic gap junction channel currents in human detrusor myocytes exhibited voltage dependence similar to homotypic connexin43. The normalized transjunctional conductance-voltage ( Gj- Vj) relationship was symmetrical and well described by a two-state Boltzmann relation ( Gmin≈ 0.33, V0= 63.6 mV, Z = 0.117 or equal to 2.95 gating charges), suggestive of a bilateral voltage-gated mechanism. In symmetric 165 mM CsCl, the measured single-channel slope conductance was ∼120 pS for the fully open channel and ∼26 pS for the major substate. Occasionally, other subconductance states were also observed. The single-channel mean open time declined with increasing Vj, accounting for the Vj-dependent decline of macroscopic junctional current. Qualitatively similar electrophysiological characteristics were observed in DWCP of freshly isolated rat detrusor myocytes. These data confirm and extend previous observations and are consistent with reports in other smooth muscle cells types in which Cx43-mediated intercellular communication has been identified.


2001 ◽  
Vol 281 (1) ◽  
pp. C75-C88 ◽  
Author(s):  
Hong-Zhan Wang ◽  
Nancy Day ◽  
Mira Valcic ◽  
Ken Hsieh ◽  
Scott Serels ◽  
...  

Intercellular communication through gap junction channels plays a fundamental role in regulating vascular myocyte tone. We investigated gap junction channel expression and activity in myocytes from the physiologically distinct vasculature of the human internal mammary artery (IMA, conduit vessel) and saphenous vein (SV, capacitance vessel). Northern and Western blots documented the presence of connexin43 (Cx43) in frozen tissues and cultured cells from both vessels. Northern blots also confirmed the presence of Cx40 mRNA in cultured IMA and SV myocytes. Dual whole cell patch-clamp experiments revealed that macroscopic junctional conductance was voltage dependent and characteristic of that observed for Cx43. In the majority of records, in both vessels, single-channel activity was dominated by a main-state conductance of 120 pS, with subconducting events comprising less than 10% of the amplitude histograms. However, some records showed “atypical” unitary events that had a conductance similar to Cx40 (∼140–160 pS), but gating behavior like that of Cx43. As such, it is conceivable that the presence and coexpression of Cx40 and Cx43 in IMA and SV myocytes may result in heteromeric channel formation. Nonetheless, in terms of gating, Cx43-like behavior clearly dominates.


1988 ◽  
Vol 254 (1) ◽  
pp. H170-H180 ◽  
Author(s):  
R. D. Veenstra ◽  
R. L. DeHaan

We have recorded single-gap junction-channel currents from pairs of 7-day chick embryo ventricle cells, using the double whole cell patch-clamp technique. Junctional conductance (Gj) was variable from one preparation to the next, ranging from 0.15 to 35.0 nS. Single-channel conductance (gamma j) of the main junctional channel was 166 +/- 51 pS and was independent of Gj; a second conductance level of 60–80 pS was also seen in favorable records. The transition time from the closed to the open state was 285 +/- 153 microseconds, with some slow transitions lasting 1–5 ms. Channels opened and closed stochastically; Gj could be defined by the product of the number of active channels in the junction (N), the mean open-state probability (Po) of the channels, and gamma j. Channel activity was unaffected by cell membrane potential or by transjunctional potential. Po and Gj were reversibly reduced to low levels by 1-octanol or by elevated [Cai], whereas gamma j was unchanged by these agents. The 60–80 pS conductance mechanism was octanol- and Ca-resistant, but it is not clear whether this represents a subconductance level of the main channel or a separate class of smaller channels.


Sign in / Sign up

Export Citation Format

Share Document