scholarly journals Luteolin Improves Perivascular Adipose Tissue Profile and Vascular Dysfunction in Goto-Kakizaki Rats

2021 ◽  
Vol 22 (24) ◽  
pp. 13671
Author(s):  
Marcelo Queiroz ◽  
Adriana Leandro ◽  
Lara Azul ◽  
Artur Figueirinha ◽  
Raquel Seiça ◽  
...  

We investigated the effects of luteolin on metabolism, vascular reactivity, and perivascular adipose tissue (PVAT) in nonobese type 2 diabetes mellitus animal model, Goto-Kakizaki (GK) rats. Methods: Wistar and GK rats were divided in two groups: (1) control groups treated with vehicle; (2) groups treated with luteolin (10 mg/kg/day, for 2 months). Several metabolic parameters such as adiposity index, lipid profile, fasting glucose levels, glucose and insulin tolerance tests were determined. Endothelial function and contraction studies were performed in aortas with (PVAT+) or without (PVAT−) periaortic adipose tissue. We also studied vascular oxidative stress, glycation and assessed CRP, CCL2, and nitrotyrosine levels in PVAT. Results: Endothelial function was impaired in diabetic GK rats (47% (GK − PVAT) and 65% (GK + PVAT) inhibition of maximal endothelial dependent relaxation) and significantly improved by luteolin treatment (29% (GK − PVAT) and 22% (GK + PVAT) inhibition of maximal endothelial dependent relaxation, p < 0.01). Vascular oxidative stress and advanced glycation end-products’ levels were increased in aortic rings (~2-fold, p < 0.05) of diabetic rats and significantly improved by luteolin treatment (to levels not significantly different from controls). Periaortic adipose tissue anti-contractile action was significantly rescued with luteolin administration (p < 0.001). In addition, luteolin treatment significantly recovered proinflammatory and pro-oxidant PVAT phenotype, and improved systemic and metabolic parameters in GK rats. Conclusions: Luteolin ameliorates endothelial dysfunction in type 2 diabetes and exhibits therapeutic potential for the treatment of vascular complications associated with type 2 diabetes.

2014 ◽  
pp. 189-197 ◽  
Author(s):  
C. M. SENA ◽  
P. MATAFOME ◽  
T. LOURO ◽  
E. NUNES ◽  
R. M. SEIÇA

Atorvastatin and insulin have distinct mechanisms of action to improve endothelial function. Therefore, we hypothesized that atorvastatin and insulin therapies alone or in combination could have beneficial effects on endothelium-dependent vascular reactivity, oxidative stress, inflammation and metabolic parameters in Goto-Kakizaki (GK) rats, a model of type 2 diabetes fed with atherogenic diet (GKAD). In parallel with the development of diabetes and lipid profile, the generation of oxidative stress was determined by measurement of lipid peroxides and oxidized proteins and the presence of inflammation was evaluated by assessing C-reactive protein (CRP). Additionally, endothelial dependent and independent vascular sensitivity to acetylcholine and sodium nitroprusside were evaluated. GKAD showed increased carbonyl stress, inflammation, fasting glycemia, dyslipidemia and endothelial dysfunction when compared to control GK rats. Noteworthy, supplementation with insulin deteriorated endothelial dysfunction while atorvastatin induced an improvement. Atorvastatin and insulin therapies in combination improved metabolic parameters, CRP levels and insulin resistance indexes and ameliorated endothelial dysfunction in GKAD rats while they were unable to reduce urinary 8-isoprostranes and plasma carbonyl compounds. The therapeutic association of atorvastatin and insulin provided a better metabolic control with a reduction in endothelial dysfunction in GKAD rats by a mechanism that involves an improvement in systemic inflammation.


Diabetes ◽  
1999 ◽  
Vol 48 (4) ◽  
pp. 927-932 ◽  
Author(s):  
Y. Ihara ◽  
S. Toyokuni ◽  
K. Uchida ◽  
H. Odaka ◽  
T. Tanaka ◽  
...  

Diabetes Care ◽  
2011 ◽  
Vol 34 (9) ◽  
pp. 1946-1948 ◽  
Author(s):  
Carlo Clerici ◽  
Elisabetta Nardi ◽  
Pier Maria Battezzati ◽  
Stefania Asciutti ◽  
Danilo Castellani ◽  
...  

Nutrients ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1859 ◽  
Author(s):  
Renate Barbosa-Yañez ◽  
Ulrike Dambeck ◽  
Linna Li ◽  
Jürgen Machann ◽  
Stefan Kabisch ◽  
...  

Background: Cardiovascular diseases (CVD) are the major cause of mortality in type 2 diabetes patients (T2DM). The causes are embedded in a complex interplay between excess body fat, insulin resistance and serum lipid anomalies. Endothelial homeostasis is strongly affected by this pathogenic network. Even though metabolic changes and weight loss improve vascular endothelial function, the effect of different dietary approaches is still uncertain for type 2 diabetes patients. Objective: We aimed to compare the acute effects of a hypocaloric very low carbohydrate (VLC) diet versus a hypocaloric low fat (LF) diet on flow mediated dilation (FMD), intrahepatic lipid (IHL) accumulation and visceral adipose tissue as independent risk factors of CVD in T2DM patients. Design: 36 T2DM patients (age 63 ± 8 years, 60% females) were randomly assigned to the VLC diet (4–10% of total energy intake (E)) or to the LF diet (<30% E) for 3 weeks. Endothelial function was assessed by the flow mediated dilation (FMD) method. Adipose tissue depots and IHL were determined by magnetic resonance. Results: Both dietary strategies reduced body weight, body fat content and IHL. Unexpectedly, the LF group experienced significantly greater enhancement of FMD, compared to the VLC group. The FMD showed a positive correlation with protein intake and fat intake in the LF group, while it revealed a negative correlation with protein intake in the VLC diet group. Conclusions: Reduction of total and hepatic adiposity was shown to be successful using either the VLC or LF hypocaloric diets, however, improvements in FMD may be related to the interplay of fat and protein intake.


2001 ◽  
Vol 154 (2) ◽  
pp. 475-483 ◽  
Author(s):  
Richard A. Anderson ◽  
Marc L. Evans ◽  
Gethin R. Ellis ◽  
J. Graham ◽  
K. Morris ◽  
...  

2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
S Saxton ◽  
R J Potter ◽  
S B Withers ◽  
R Grencis ◽  
A M Heagerty

Abstract Background/Purpose Perivascular adipose tissue (PVAT) is essential in the modulation of vascular tone. Recently we have shown that resident eosinophils play a vital role in regulating PVAT function. In obesity, eosinophil numbers are reduced and PVAT anticontractile function is lost, resulting in increased vascular tone, which will contribute to development of hypertension and type-2 diabetes. Evidence suggests that eosinophilia resulting from parasitic infection may be useful in improving glucose tolerance; therefore, we investigated the effects of eosinophilia on PVAT function in health and obesity. Methods Control mice and a high fat fed mouse model of obesity were administered intraperitoneal injections of interleukin-33 (IL-33, 0.1μg) over a five day period. Blood pressure, blood glucose and plasma insulin were measured and compared with un-injected control and obese mice. Wire myography was used to assess the vascular contractility of mesenteric arteries (<250μm, +/− PVAT) from both injected and un-injected control and obese mice in response to noradrenaline. ELISAs and immunohistochemistry were used to examine eosinophil numbers. Results High fat feeding induced significant elevations in blood pressure, blood glucose and plasma insulin, which were reduced using IL-33 injections. Eosinophilia was confirmed in blood plasma using an eosinophil cationic protein ELISA. Using wire myography, mesenteric arteries from control mice PVAT exerted an anticontractile effect on the vessels, which was enhanced in control mice injected with IL-33. In obese mice, the PVAT anticontractile effect was lost, but was restored in IL-33 injected obese mice. Using immunohistochemistry, we confirm that eosinophils numbers in PVAT were reduced in obesity and increased in IL-33 treated PVAT. Conclusions IL-33 injections induced eosinophilia in both control and obese mice. IL-33 treatment restored PVAT function in obesity, and enhanced the anticontractile function of PVAT in healthy animals. In addition, only five consecutive injections of IL-33 reversed development of hypertension and type-2 diabetes in obese mice. These data suggest that IL-33 induced eosinophilia presents a novel approach to treatment of hypertension and type-2 diabetes in obesity. Acknowledgement/Funding British Heart Foundation


2018 ◽  
Vol 120 ◽  
pp. S162 ◽  
Author(s):  
Adriana Leandro ◽  
Lara Azul ◽  
Rosa Fernandes ◽  
Raquel Seiça ◽  
Cristina Sena

Sign in / Sign up

Export Citation Format

Share Document