scholarly journals The Study of Cerebrospinal Fluid microRNAs in Spinal Cord Injury and Neurodegenerative Diseases: Methodological Problems and Possible Solutions

2021 ◽  
Vol 23 (1) ◽  
pp. 114
Author(s):  
Irina Baichurina ◽  
Victor Valiullin ◽  
Victoria James ◽  
Albert Rizvanov ◽  
Yana Mukhamedshina

Despite extensive research on neurological disorders, unanswered questions remain regarding the molecular mechanisms underpinning the course of these diseases, and the search continues for effective biomarkers for early diagnosis, prognosis, or therapeutic intervention. These questions are especially acute in the study of spinal cord injury (SCI) and neurodegenerative diseases. It is believed that the changes in gene expression associated with processes triggered by neurological disorders are the result of post-transcriptional gene regulation. microRNAs (miRNAs) are key regulators of post-transcriptional gene expression and, as such, are often looked to in the search for effective biomarkers. We propose that cerebrospinal fluid (CSF) is potentially a source of biomarkers since it is in direct contact with the central nervous system and therefore may contain biomarkers indicating neurodegeneration or damage to the brain and spinal cord. However, since the abundance of miRNAs in CSF is low, their isolation and detection is technically difficult. In this review, we evaluate the findings of recent studies of CSF miRNAs as biomarkers of spinal cord injury (SCI) and neurodegenerative diseases. We also summarize the current knowledge concerning the methods of studying miRNA in CSF, including RNA isolation and normalization of the data, highlighting the caveats of these approaches and possible solutions.

2010 ◽  
Vol 103 (2) ◽  
pp. 761-778 ◽  
Author(s):  
J. Wienecke ◽  
A-C. Westerdahl ◽  
H. Hultborn ◽  
O. Kiehn ◽  
J. Ryge

Spinal cord injury leads to severe problems involving impaired motor, sensory, and autonomic functions. After spinal injury there is an initial phase of hyporeflexia followed by hyperreflexia, often referred to as spasticity. Previous studies have suggested a relationship between the reappearance of endogenous plateau potentials in motor neurons and the development of spasticity after spinalization. To unravel the molecular mechanisms underlying the increased excitability of motor neurons and the return of plateau potentials below a spinal cord injury we investigated changes in gene expression in this cell population. We adopted a rat tail-spasticity model with a caudal spinal transection that causes a progressive development of spasticity from its onset after 2 to 3 wk until 2 mo postinjury. Gene expression changes of fluorescently identified tail motor neurons were studied 21 and 60 days postinjury. The motor neurons undergo substantial transcriptional regulation in response to injury. The patterns of differential expression show similarities at both time points, although there are 20% more differentially expressed genes 60 days compared with 21 days postinjury. The study identifies targets of regulation relating to both ion channels and receptors implicated in the endogenous expression of plateaux. The regulation of excitatory and inhibitory signal transduction indicates a shift in the balance toward increased excitability, where the glutamatergic N-methyl-d-aspartate receptor complex together with cholinergic system is up-regulated and the γ-aminobutyric acid type A receptor system is down-regulated. The genes of the pore-forming proteins Cav1.3 and Nav1.6 were not up-regulated, whereas genes of proteins such as nonpore-forming subunits and intracellular pathways known to modulate receptor and channel trafficking, kinetics, and conductivity showed marked regulation. On the basis of the identified changes in global gene expression in motor neurons, the present investigation opens up for new potential targets for treatment of motor dysfunction following spinal cord injury.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 233-LB
Author(s):  
XIN-HUA LIU ◽  
LAUREN HARLOW ◽  
ZACHARY GRAHAM ◽  
JOSHUA F. YARROW ◽  
KENNETH CUSI ◽  
...  

Author(s):  
John K. Yue ◽  
Rachel E. Tsolinas ◽  
John F. Burke ◽  
Hansen Deng ◽  
Pavan S. Upadhyayula ◽  
...  

1999 ◽  
Vol 6 (1) ◽  
pp. E10 ◽  
Author(s):  
Charles H. Tator ◽  
Michael G. Fehlings

In this paper the authors review the clinical trials of neuroprotection that have been performed for the treatment of acute spinal cord injury (SCI). The biological rationale for the selection of each treatment modality is discussed with reference to current knowledge of the principles in the management of acute SCI as well as the primary and secondary injury mechanisms identified by experimental and clinical studies of the pathophysiology of acute SCI. The trials are evaluated with regard to the availability and use of accurate clinical outcome measures, and the methodologies of the trials are critically evaluated with an emphasis on prospective randomized controlled studies. A detailed description and critical analysis are provided of the results of the 10 clinical trials conducted to date in which a randomized prospective controlled design has been used. The issue of the therapeutic time window in acute SCI is discussed. To date, methylprednisolone is the only effective neuroprotective agent that has been established for use in human SCI, and the only therapeutic time window established in human SCI is a maximum trauma-to-treatment time of 8 hours.


2020 ◽  
Author(s):  
Huiqiang Chen ◽  
Mengyu Yao ◽  
Zhibo Li ◽  
Ranran Xing ◽  
Cheng Zhang ◽  
...  

Abstract Background: Emerging evidence demonstrated that hyperbaric oxygenation (HBO) therapy improved the locomotor dysfunction following spinal cord injury (SCI). Sirtuin1(SIRT1) has been characterized as neuroprotection in nerve system. However, whether SIRT1 is involved in alleviation of locomotor function by HBO therapy is unclear. Methods: The Basso, Beattie Bresnahan (BBB) locomotor rating scale was used to evaluate the open-field locomotor function. Western blot, real-time quantitative reverse transcription polymerase chain reaction, SIRT1 activity assay and enzyme-linked immunosorbent assays were performed to explore the molecular mechanisms in adult Sprague-Dawley rats. Results: We found that series HBO therapy significantly improved the locomotor dysfunction and ameliorated the decrease mRNA, protein and activity of spinal cord SIRT1 induced by traumatic SCI injury in rats. In addition, intraperitoneal injection SIRT1 antagonist EX-527 abolished the beneficial effects of series HBO treatment on locomotor deficits and SIRT1 activity loss caused by traumatic SCI injury. However, the rats undergone both series HBO therapy and SIRT1 agonist SRT1720 got the higher BBB score than that undergone series HBO treatment only. Importantly, series HBO treatment following the traumatic SCI injury inhibited the inflammatory cascade and apoptosis-related protein, which was retained by EX-527 and enhanced by SRT1720. Furthermore, EX-527 blocked the enhanced induction of autophagy series with HBO application. Conclusion: These findings demonstrated a new mechanism for series HBO therapy involving activation of SIRT1 and subsequent modulation of inflammatory cascade, apoptosis and autophagy, which contributed to the recovery of motor dysfunction. Key words: HBO, SIRT1, motor dysfunction, inflammation, autophagy, apoptosis


Sign in / Sign up

Export Citation Format

Share Document