scholarly journals Insights into the Structure and Protein Composition of Moorella thermoacetica Spores Formed at Different Temperatures

2022 ◽  
Vol 23 (1) ◽  
pp. 550
Author(s):  
Tiffany Malleck ◽  
Fatima Fekraoui ◽  
Isabelle Bornard ◽  
Céline Henry ◽  
Eloi Haudebourg ◽  
...  

The bacterium Moorella thermoacetica produces the most heat-resistant spores of any spoilage-causing microorganism known in the food industry. Previous work by our group revealed that the resistance of these spores to wet heat and biocides was lower when spores were produced at a lower temperature than the optimal temperature. Here, we used electron microcopy to characterize the ultrastructure of the coat of the spores formed at different sporulation temperatures; we found that spores produced at 55 °C mainly exhibited a lamellar inner coat tightly associated with a diffuse outer coat, while spores produced at 45 °C showed an inner and an outer coat separated by a less electron-dense zone. Moreover, misarranged coat structures were more frequently observed when spores were produced at the lower temperature. We then analyzed the proteome of the spores obtained at either 45 °C or 55 °C with respect to proteins putatively involved in the spore coat, exosporium, or in spore resistance. Some putative spore coat proteins, such as CotSA, were only identified in spores produced at 55 °C; other putative exosporium and coat proteins were significantly less abundant in spores produced at 45 °C. Altogether, our results suggest that sporulation temperature affects the structure and protein composition of M. thermoacetica spores.

1998 ◽  
Vol 180 (9) ◽  
pp. 2285-2291 ◽  
Author(s):  
Adriano O. Henriques ◽  
Lawrence R. Melsen ◽  
Charles P. Moran

ABSTRACT Endospores of Bacillus subtilis are enclosed in a proteinaceous coat which can be differentiated into a thick, striated outer layer and a thinner, lamellar inner layer. We found that the N-terminal sequence of a 25-kDa protein present in a preparation of spore coat proteins matched that of the Mn-dependent superoxide dismutase (SOD) encoded by the sodA locus.sodA is transcribed throughout the growth and sporulation of a wild-type strain and is responsible for the SOD activity detected in total cell extracts prepared from B. subtilis. Disruption of the sodA locus produced a mutant that lacked any detectable SOD activity during vegetative growth and sporulation. The sodA mutant was not impaired in the ability to form heat- or lysozyme-resistant spores. However, examination of the coat layers of sodA mutant spores revealed increased extractability of the tyrosine-rich outer coat protein CotG. We showed that this condition was not accompanied by augmented transcription of the cotG gene in sporulating cells of the sodA mutant. We conclude that SodA is required for the assembly of CotG into the insoluble matrix of the spore and suggest that CotG is covalently cross-linked into the insoluble matrix by an oxidative reaction dependent on SodA. Ultrastructural analysis revealed that the inner coat formed by a sodA mutant was incomplete. Moreover, the outer coat lacked the characteristic striated appearance of wild-type spores, a pattern that was accentuated in acotG mutant. These observations suggest that the SodA-dependent formation of the insoluble matrix containing CotG is largely responsible for the striated appearance of this coat layer.


2001 ◽  
Vol 183 (10) ◽  
pp. 3041-3049 ◽  
Author(s):  
Amanda J. Ozin ◽  
Craig S. Samford ◽  
Adriano O. Henriques ◽  
Charles P. Moran

ABSTRACT Bacteria assemble complex structures by targeting proteins to specific subcellular locations. The protein coat that encasesBacillus subtilis spores is an example of a structure that requires coordinated targeting and assembly of more than 24 polypeptides. The earliest stages of coat assembly require the action of three morphogenetic proteins: SpoIVA, CotE, and SpoVID. In the first steps, a basement layer of SpoIVA forms around the surface of the forespore, guiding the subsequent positioning of a ring of CotE protein about 75 nm from the forespore surface. SpoVID localizes near the forespore membrane where it functions to maintain the integrity of the CotE ring and to anchor the nascent coat to the underlying spore structures. However, it is not known which spore coat proteins interact directly with SpoVID. In this study we examined the interaction between SpoVID and another spore coat protein, SafA, in vivo using the yeast two-hybrid system and in vitro. We found evidence that SpoVID and SafA directly interact and that SafA interacts with itself. Immunofluorescence microscopy showed that SafA localized around the forespore early during coat assembly and that this localization of SafA was dependent on SpoVID. Moreover, targeting of SafA to the forespore was also dependent on SpoIVA, as was targeting of SpoVID to the forespore. We suggest that the localization of SafA to the spore coat requires direct interaction with SpoVID.


1984 ◽  
Vol 4 (11) ◽  
pp. 2273-2278
Author(s):  
B C Dowds ◽  
W F Loomis

The three major spore coat proteins of Dictyostelium discoideum are developmentally regulated, cell-type-specific proteins. They are packaged in prespore vesicles and then secreted to form the outer layer of spore coats. We have isolated a cDNA clone from the gene coding for one of these proteins, SP96, a glycoprotein of 96,000 daltons. We screened the cDNA bank by the method of hybrid select translation followed by immunoprecipitation of the translation products with SP96-specific polyclonal antiserum. We found that the gene was first transcribed into stable mRNA a few hours before the time of detection of SP96 synthesis and that the mRNA, like the protein, accumulated specifically in prespore cells and spores. SP96 constituted the same proportion of newly synthesized protein as the proportion of its message in polyadenylated RNA. SP96 appeared to be encoded by a single gene as judged by Southern blot analysis of digested genomic DNA hybridized to the cDNA clone.


1985 ◽  
Vol 29 (12) ◽  
pp. 1151-1162 ◽  
Author(s):  
Masayoshi Imagawa ◽  
Yuichi Oku ◽  
Hussein I. El-Belbasi ◽  
Mie Teraoka ◽  
Tsutomu Nishihara ◽  
...  

2000 ◽  
Vol 192 (1) ◽  
pp. 33-38 ◽  
Author(s):  
Hiromu Takamatsu ◽  
Atsuo Imamura ◽  
Takeko Kodama ◽  
Kei Asai ◽  
Naotake Ogasawara ◽  
...  

1983 ◽  
Vol 61 (9) ◽  
pp. 996-1001 ◽  
Author(s):  
Teshome Akalehiywot ◽  
Chi-Hung Siu

Phosphorylation of cellular proteins was studied during development of Dictyostelium discoideum. In the second half of the developmental cycle, two heavily phosphorylated proteins were observed together with a limited number of minor phosphorylated proteins. The electrophoretic mobility of these two phosphoproteins corresponded to two of the major spore coat glycoproteins, with apparent molecular weights of 103 000 and 80 000. They were found to be externalized and associated with the spore coat during spore formation. Phosphoserine was the predominant phosphoamino acid in both cases. These two phosphoproteins thus serve as excellent markers for the differentiation of prespore cells in D. discoideum.


Microbiology ◽  
2014 ◽  
Vol 160 (10) ◽  
pp. 2200-2207 ◽  
Author(s):  
Miaomiao Wu ◽  
Shihui Xu ◽  
Wei Zhu ◽  
Xiaohua Mao

Subunit–subunit interactions of the classical and alternate chaperone–usher (CU) systems have been shown to proceed through a donor strand exchange (DSE) mechanism. However, it is not known whether DSE is required for intersubunit interactions in the archaic CU system. We have previously shown that the Myxococcus xanthus Mcu system, a member of the archaic CU family that functions in spore coat formation, is likely to use the principle of donor strand complementation to medicate chaperone–subunit interactions analogous to the classical CU pathway. Here we describe the results of studies on Mcu subunit–subunit interactions. We constructed a series of N-terminal-deleted, single amino acid-mutated and donor strand-complemented Mcu subunits, and characterized their abilities to participate in subunit–subunit interactions. It appears that certain residues in both the N and C termini of McuA, a subunit of the Mcu system, play a critical role in intersubunit interactions and these interactions may involve the general principle of DSE of the classical and alternate CU systems. In addition, the specificity of the M. xanthus CU system for Mcu subunits over other spore coat proteins is demonstrated.


2002 ◽  
Vol 184 (4) ◽  
pp. 1219-1224 ◽  
Author(s):  
Irina Bagyan ◽  
Peter Setlow

ABSTRACT The enzyme CwlJ is involved in the depolymerization of cortex peptidoglycan during germination of spores of Bacillus subtilis. CwlJ with a C-terminal His tag was functional and was extracted from spores by procedures that remove spore coat proteins. However, this CwlJ was not extracted from disrupted spores by dilute buffer, high salt concentrations, Triton X-100, Ca2+-dipicolinic acid, dithiothreitol, or peptidoglycan digestion, disappeared during spore germination, and was not present in cotE spores in which the spore coat is aberrant. These findings indicate the following: (i) the reason decoated and cotE spores germinate poorly with dipicolinic acid is the absence of CwlJ from these spores; and (ii) CwlJ is located in the spore coat, presumably tightly associated with one or more other coat proteins.


Sign in / Sign up

Export Citation Format

Share Document