scholarly journals Role of microRNAs in the Pathophysiology of Ulcerative Colitis

Immuno ◽  
2021 ◽  
Vol 1 (4) ◽  
pp. 558-573
Author(s):  
Takahiko Toyonaga ◽  
Masayuki Saruta

Ulcerative colitis (UC) is an intractable disorder characterized by a chronic inflammation of the colon. Studies have identified UC as a multifactorial disorder affected by both genetic and environmental factors; however, the precise mechanism remains unclear. Recent advances in the field of microRNA (miRNA) research have identified an association between this small non-coding RNA in the pathophysiology of UC and altered miRNA expression profiles in patients with UC. Nevertheless, the roles of individual miRNAs are uncertain due to heterogeneity in both research samples and clinical backgrounds. In this review, we focus on miRNA expression in colonic mucosa where inflammation occurs in UC and discuss the potential roles of individual miRNAs in disease development, outlining the pathophysiology of UC.

2009 ◽  
Vol 2009 ◽  
pp. 1-5 ◽  
Author(s):  
Sébastien S. Hébert

Background. The conserved noncoding microRNAs (miRNAs) that function to regulate gene expression are essential for the development and function of the brain and heart. Changes in miRNA expression profiles are associated with an increased risk for developing neurodegenerative disorders as well as heart failure. Here, the hypothesis of how miRNA-regulated pathways could contribute to comorbid neurological and cardiovascular disorders will be discussed. Presentation. Changes in miRNA expression occurring in the brain and heart could have an impact on coexisting neurological and cardiovascular characteristics by (1) modulating organ function, (2) accentuating cellular stress, and (3) impinging on neuronal and/or heart cell survival. Testing. Evaluation of miRNA expression profiles in the brain and heart tissues from individuals with comorbid neurodegenerative and cardiovascular disorders will be of great importance and relevance. Implications. Careful experimental design will shed light to the deeper understanding of the molecular mechanisms tying up those different but yet somehow connected diseases.


Author(s):  
Ian Morilla ◽  
Mathieu Uzzan ◽  
Dominique Cazals-Hatem ◽  
Nathalie Colnot ◽  
Yves Panis ◽  
...  

Abstract Background Ileal pouch-anal anastomosis (IPAA) is the standard of care after total proctocolectomy for ulcerative colitis (UC). However, inflammation often develops in the pouch, leading to acute or recurrent/chronic pouchitis (R/CP). MicroRNAs (miRNA) are used as accurate diagnostic and predictive biomarkers in many human diseases, including inflammatory bowel diseases. Therefore, we aimed to identify an miRNA-based biomarker to predict the occurrence of R/CP in patients with UC after colectomy and IPAA. Methods We conducted a retrospective study in 3 tertiary centers in France. We included patients with UC who had undergone IPAA with or without subsequent R/CP. Paraffin-embedded biopsies collected from the terminal ileum during the proctocolectomy procedure were used for microarray analysis of miRNA expression profiles. Deep neural network–based classifiers were used to identify biomarkers predicting R/CP using miRNA expression and relevant biological and clinical factors in a discovery cohort of 29 patients. The classification algorithm was tested in an independent validation cohort of 28 patients. Results A combination of 11 miRNA expression profiles and 3 biological/clinical factors predicted the outcome of R/CP with 88% accuracy (area under the curve = 0.94) in the discovery cohort. The performance of the classification algorithm was confirmed in the validation cohort with 88% accuracy (area under the curve = 0.90). Apoptosis, cytoskeletal regulation by Rho GTPase, and fibroblast growth factor signaling were the most dysregulated targets of the 11 selected miRNAs. Conclusions We developed and validated a computational miRNA-based algorithm for accurately predicting R/CP in patients with UC after IPAA.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Yan Huang ◽  
Zhe Ma ◽  
Yun-hua Cui ◽  
Hong-sheng Dong ◽  
Ji-meng Zhao ◽  
...  

Objective.This study explored the mechanism of herb-partitioned moxibustion (HM) on dextran sulfate sodium- (DSS-) induced ulcerative colitis (UC) from the miRNA perspective.Methods.Rats were randomly divided into 3 groups [normal control (NC) group, UC model (UC) group, and herb-partitioned moxibustion (UCHM) group]. The UC and UCHM groups were administered 4% DSS for 7 days. The UCHM group received HM at the Tianshu (bilateral, ST25). The effect of HM on UC was observed and the miRNA expression profile in the colon tissues was analyzed.Results.Compared with the UC group, the body weights were significantly higher in the UCHM group on day 14 (P<0.001); the macroscopic colon injury scores and microscopic histopathology scores in the UCHM group decreased (P<0.05); and there were 15 differentially expressed miRNAs in the UCHM group. The changes in miR-184 and miR-490-5p expression levels on the UC were reversed by HM intervention. Validation using qRT-PCR showed that two miRNAs expression trend was consistent with the sequencing results.Conclusion.HM at ST25 might regulate miR-184 and miR-490-5p expression, act on the transcription of their target genes to regulate inflammatory signaling pathways, and attenuate inflammation and tissue injury in the colons of rats with DSS-induced UC.


2020 ◽  
Vol 21 (7) ◽  
pp. 722-734
Author(s):  
Adele Soltani ◽  
Arefeh Jafarian ◽  
Abdolamir Allameh

micro (mi)-RNAs are vital regulators of multiple processes including insulin signaling pathways and glucose metabolism. Pancreatic &#946;-cells function is dependent on some miRNAs and their target mRNA, which together form a complex regulative network. Several miRNAs are known to be directly involved in &#946;-cells functions such as insulin expression and secretion. These small RNAs may also play significant roles in the fate of &#946;-cells such as proliferation, differentiation, survival and apoptosis. Among the miRNAs, miR-7, miR-9, miR-375, miR-130 and miR-124 are of particular interest due to being highly expressed in these cells. Under diabetic conditions, although no specific miRNA profile has been noticed, the expression of some miRNAs and their target mRNAs are altered by posttranscriptional mechanisms, exerting diverse signs in the pathobiology of various diabetic complications. The aim of this review article is to discuss miRNAs involved in the process of stem cells differentiation into &#946;-cells, resulting in enhanced &#946;-cell functions with respect to diabetic disorders. This paper will also look into the impact of miRNA expression patterns on in vitro proliferation and differentiation of &#946;-cells. The efficacy of the computational genomics and biochemical analysis to link the changes in miRNA expression profiles of stem cell-derived &#946;-cells to therapeutically relevant outputs will be discussed as well.


Author(s):  
Michela Bulfoni ◽  
Riccardo Pravisani ◽  
Emiliano Dalla ◽  
Daniela Cesselli ◽  
Masaaki Hidaka ◽  
...  

Author(s):  
Wenhui Huang ◽  
Xuefeng Gu ◽  
Yingying Wang ◽  
Yuhan Bi ◽  
Yu. Yang ◽  
...  

2012 ◽  
Vol 302 (10) ◽  
pp. G1163-G1170 ◽  
Author(s):  
Kazuhiko Uchiyama ◽  
Yuji Naito ◽  
Tomohisa Takagi ◽  
Katsura Mizushima ◽  
Yasuko Hirai ◽  
...  

Serpin B1 is a monocyte neutrophil elastase (NE) inhibitor and is one of the most efficient inhibitors of NE. In the present study, we investigated the role of serpin B1 in the pathogenesis of ulcerative colitis by using clinical samples and an experimental model. The colonic expression of serpin B1 was determined by real-time polymerase chain reaction (PCR), Western blot analysis, and immunohistological studies in both normal and inflamed mucosa from patients with ulcerative colitis. Serpin B1 mRNA expression was determined by real-time PCR in the mouse dextran sodium sulfate (DSS)-induced colitis model. Young adult mouse colonic epithelial (YAMC) cells were used to determine the role of serpin B1. Serpin B1 gene transfected YAMC cells were treated with H2O2 to measure cell viability. The expression of NE was determined in YAMC cells treated with H2O2. NE-silenced YAMC cells were also treated with H2O2 and then measured for viability. Upregulated expression of serpin B1 in colonic mucosa was confirmed from patients with active ulcerative colitis. Immunohistochemical studies showed that serpin B1 expression was localized not only in inflammatory infiltration cells but also in epithelial cells. Serpin B1 mRNA expression was also increased in colonic mucosa of mouse DSS-induced colitis. Serpin B1-transfected YAMC cells were resistant against the treatment of H2O2. H2O2 treatment significantly induced NE in YAMC cells, and NE-silenced YAMC cells were also resistant against the treatment of H2O2. These results suggest that serpin B1 may be a novel marker of active ulcerative colitis and may play an important role in the pathogenesis of inflammatory bowel disease.


Sign in / Sign up

Export Citation Format

Share Document