individual mirnas
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 28)

H-INDEX

12
(FIVE YEARS 3)

Cancers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 65
Author(s):  
Zitong Zhao ◽  
Anna Zhu ◽  
Megha Bhardwaj ◽  
Petra Schrotz-King ◽  
Hermann Brenner

Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer mortality globally. Fecal miRNAs have been suggested to be promising biomarkers for CRC early detection. We aimed to conduct a systematic literature review on the diagnostic performance of fecal miRNA markers for CRC and its precursors. PubMed and Web of Science were searched to retrieve relevant articles published up to 7 December 2021. Information on study design, characteristics of study population, pre-analytics (sample collection, processing, and storage), fecal miRNA extraction and quantification technologies, and diagnostic performance (including sensitivity, specificity, and area under the curve (AUC)) were summarized. Twenty studies reporting on 31 individual miRNAs and 16 miRNA panels (with 2–9 markers) for CRC diagnosis were identified. Substantial heterogeneity existed regarding stool sample collection, processing, storage, and miRNA extraction and normalization. For two individual miRNAs and one miRNA panel, values ≥ 80% were reported for both sensitivity and specificity; however, none of these results were either internally or externally validated. In a study among fecal immunochemical test-positive cases recruited from a true screening setting, better diagnostic performance was identified and internally validated for a combination panel including two miRNAs, fecal hemoglobin level, and patient age and sex, compared with fecal hemoglobin concentration alone. Fecal miRNAs or miRNA panels, possibly in combination with fecal hemoglobin test, may be promising candidates for noninvasive CRC early detection. However, large prospective and well-designed studies in CRC screening cohorts are required to validate promising miRNAs or miRNA panels.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ineke L. Tan ◽  
Rodrigo Coutinho de Almeida ◽  
Rutger Modderman ◽  
Anna Stachurska ◽  
Jackie Dekens ◽  
...  

Background & AimsCeliac disease (CeD), an immune-mediated disease with enteropathy triggered by gluten, affects ~1% of the general European population. Currently, there are no biomarkers to predict CeD development. MicroRNAs (miRNAs) are short RNAs involved in post-transcriptional gene regulation, and certain disease- and stage-specific miRNA profiles have been found previously. We aimed to investigate whether circulating miRNAs can predict the development of CeD.MethodsUsing next-generation miRNA-sequencing, we determined miRNAs in >200 serum samples from 53 participants of the PreventCD study, of whom 33 developed CeD during follow-up. Following study inclusion at 3 months of age, samples were drawn at predefined ages, diagnosis (first anti-transglutaminase antibody (TGA) positivity or diagnostic biopsy) and after the start of a gluten-free diet (GFD). This allowed identification of circulating miRNAs that are deregulated before TGA positivity. For validation of the biomarkers for CeD and GFD response, two additional cohorts were included in subsequent meta-analyses. Additionally, miRNAs were measured in duodenal biopsies in a case-control cohort.Results53 circulating miRNAs were increased (27) or decreased (26) in CeD versus controls. We assessed specific trends in these individual miRNAs in the PreventCD cohort by grouping the pre-diagnostic samples of the CeD patients (all had negative TGA) by how close to seroconversion (first sample positive TGA) the samples were taken. 8/53 miRNAs differed significantly between controls and samples taken <1 year before TGA positivity: miR-21-3p, miR-374a-5p, 144-3p, miR-500a-3p, miR-486-3p let-7d-3p, let-7e-5p and miR-3605-3p. 6/26 downregulated miRNAs reconstituted upon GFD, including miR-150-5p/-3p, whereas no upregulated miRNAs were downregulated upon GFD. 15/53 biomarker candidates also differed between CeD biopsies and controls, with a concordant direction, indicating that these circulating miRNAs might originate from the intestine.ConclusionsWe identified 53 circulating miRNAs that are potential early biomarkers for CeD, of which several can be detected more than a year before TGA positivity and some start to normalize upon GFD.


Immuno ◽  
2021 ◽  
Vol 1 (4) ◽  
pp. 558-573
Author(s):  
Takahiko Toyonaga ◽  
Masayuki Saruta

Ulcerative colitis (UC) is an intractable disorder characterized by a chronic inflammation of the colon. Studies have identified UC as a multifactorial disorder affected by both genetic and environmental factors; however, the precise mechanism remains unclear. Recent advances in the field of microRNA (miRNA) research have identified an association between this small non-coding RNA in the pathophysiology of UC and altered miRNA expression profiles in patients with UC. Nevertheless, the roles of individual miRNAs are uncertain due to heterogeneity in both research samples and clinical backgrounds. In this review, we focus on miRNA expression in colonic mucosa where inflammation occurs in UC and discuss the potential roles of individual miRNAs in disease development, outlining the pathophysiology of UC.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Gaspare La Rocca ◽  
Bryan King ◽  
Bing Shui ◽  
Xiaoyi Li ◽  
Minsi Zhang ◽  
...  

Although virtually all gene networks are predicted to be controlled by miRNAs, the contribution of this important layer of gene regulation to tissue homeostasis in adult animals remains unclear. Gain and loss of function experiments have provided key insights into the specific function of individual miRNAs, but effective genetic tools to study the functional consequences of global inhibition of miRNA activity in vivo are lacking. Here we report the generation and characterization of a genetically engineered mouse strain in which miRNA-mediated gene repression can be reversibly inhibited without affecting miRNA biogenesis or abundance. We demonstrate the usefulness of this strategy by investigating the consequences of acute inhibition of miRNA function in adult animals. We find that different tissues and organs respond differently to global loss of miRNA function. While miRNA-mediated gene repression is essential for the homeostasis of the heart and the skeletal muscle, it is largely dispensable in the majority of other organs. Even in tissues where it is not required for homeostasis, such as the intestine and hematopoietic system, miRNA activity can become essential during regeneration following acute injury. These data support a model where many metazoan tissues primarily rely on miRNA function to respond to potentially pathogenic events.


Author(s):  
Jing Yang ◽  
Lin Xu ◽  
Xin Yin ◽  
Yi Li Zheng ◽  
Hai Peng Zhang ◽  
...  

AbstractHigh-volume training followed by inadequate recovery may cause overtraining. This process may undermine the protective effect of regular exercise on the cardiovascular system and may increase the risk of pathological cardiac remodelling. We evaluated whether chronic overtraining changes cardiac-related microRNA profiles in the left and right ventricles. C57BL/6 mice were divided into the control, normal training, and overtrained by running without inclination, uphill running or downhill running groups. After an 8-week treadmill training protocol, the incremental load test and training volume results showed that the model had been successfully established. The qRT-PCR results showed increased cardiac miR-1, miR-133a, miR-133b, miR-206, miR-208b and miR-499 levels in the left ventricle of the downhill running group compared with the left ventricle of the control group. Similarly, compared with the control group, the downhill running induced increased expression of miR-21, miR-17–3p, and miR-29b in the left ventricle. Unlike the changes in the left ventricle, no difference in the expression of the tested miRNAs was observed in the right ventricle. Briefly, our results indicated that overtraining generally affects key miRNAs in the left ventricle (rather than the right ventricle) and that changes in individual miRNAs may cause either adaptive or maladaptive remodelling with overtraining.


2021 ◽  
pp. 1-11
Author(s):  
Li-Rong Zhu ◽  
Rong-Xia Yuan ◽  
Xian-Bin Xia ◽  
Yi Wang ◽  
Yu-Min Zhu ◽  
...  

BACKGROUND: Differential diagnosis between malignant pleural effusion (MPE) and benign pleural effusion (BPE) remains a clinical challenge. OBJECTIVE: The aim of the study is to assess the efficacy of the serum and pleural fluid (PF) miRNA panels in distinguishing MPE from BPE. METHODS: Fourteen candidate miRNAs which were shown aberrant expression in lung cancer based on previous studies were tested by quantitative real-time PCR (qRT-PCR) in 20 MPE patients and 20 BPE patients. Significantly aberrantly expressed miRNAs were further assessed by qRT-PCR in all patients enrolled in this study. A receiver operating characteristic (ROC) curve was constructed, and the area under the ROC curve (AUC) was calculated to evaluated the diagnostic performance of the miRNAs. RESULTS: miR-21, miR-29c and miR-182 were found to be significantly aberrantly expressed in the serum and PF of MPE patients. The AUCs for the combination of miR-21, miR-29c and miR-182 in serum and PF were 0.832 and 0.89 respectively in distinguishing MPE from infection-associated PE including tuberculous pleurisy and parapneumonia PE, and 0.866 and 0.919 respectively for differentiating MPE from heart failure-associated PE, which were superior to AUC of each individual miRNAs. CONCLUSIONS: miR-21, miR-29c and miR-182 in serum and PF could be useful biomarkers for MPE of diagnosis.


Author(s):  
Tie-Long Xu ◽  
Ya-Wen Sun ◽  
Xin-Yu Feng ◽  
Xiao-Nong Zhou ◽  
Bin Zheng

MicroRNA (miRNA or miR)-based approaches to interrupt the transmission of mosquito-borne diseases have been explored since 2005. A review of these studies and areas in which to proceed is needed. In this review, significant progress is reviewed at the level of individual miRNAs, and miRNA diversification and relevant confounders are described in detail. Current miRNA studies in mosquitoes include four steps, namely, identifying miRNAs, validating miRNA-pathogen interactions, exploring action mechanisms, and performing preapplication investigations. Notably, regarding the Plasmodium parasite, mosquito miRNAs generally bind to mosquito immunity- or development-related mRNAs, indirectly regulating Plasmodium infection; However, regarding arboviruses, mosquito miRNAs can bind to the viral genome, directly modifying viral replication. Thus, during explorations of miRNA-based approaches, researchers need select an ideal miRNA for investigation based on the mosquito species, tissue, and mosquito-borne pathogen of interest. Additionally, strategies for miRNA-based approaches differ for arboviruses and protozoan parasites.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Maryam Khanehzad ◽  
Seyed Mehdi Nourashrafeddin ◽  
Farid Abolhassani ◽  
Shokoofeh Kazemzadeh ◽  
Soheila Madadi ◽  
...  

Abstract Background The importance of spermatogonial stem cells (SSCs) in spermatogenesis is crucial and intrinsic factors and extrinsic signals mediate fate decisions of SSCs. Among endogenous regulators, microRNAs (miRNAs) play critical role in spermatogenesis. However, the mechanisms which individual miRNAs regulate self- renewal and differentiation of SSCs are unknown. The aim of this study was to investigate effects of miRNA-30a-5p inhibitor on fate determinations of SSCs. Methods SSCs were isolated from testes of neonate mice (3–6 days old) and their purities were performed by flow cytometry with ID4 and Thy1 markers. Cultured cells were transfected with miRNA- 30a-5p inhibitor. Evaluation of the proliferation (GFRA1, PLZF and ID4) and differentiation (C-Kit & STRA8) markers of SSCs were accomplished by immunocytochemistry and western blot 48 h after transfection. Results Based on the results of flow cytometry with ID4 and Thy1 markers, percentage of purity of SSCs was about 84.3 and 97.4 % respectively. It was found that expression of differentiation markers after transfection was significantly higher in miRNA-30a- 5p inhibitor group compared to other groups. The results of proliferation markers evaluation also showed decrease of GFRA1, PLZF and ID4 protein in SSCs transfected with miRNA-30a-5p inhibitor compared to the other groups. Conclusions It can be concluded that inhibition of miRNA-30a-5p by overexpression of differentiation markers promotes differentiation of Spermatogonial Stem Cells.


Author(s):  
Ruiqi Wang ◽  
Mengxuan Reng ◽  
Shuanghui Tian ◽  
Cong Liu ◽  
He Cheng ◽  
...  

Abstract We applied miRNA expression profiling method to Populus trichocarpa stems of the three developmental stages, primary stem (PS), transitional stem (TS), and secondary stem (SS), to investigate miRNA species and their regulation on lignocellulosic synthesis and related processes. We obtained 892, 872, and 882 known miRNAs and 1,727, 1,723, and 1,597 novel miRNAs, from PS, TS, and SS, respectively. Comparisons of these miRNA species among different developmental stages led to the identification of 114, 306, and 152 differentially expressed miRNAs (DE-miRNAs), which had 921, 2,639, and 2,042 candidate target genes (CTGs) in the three respective stages of the same order. Corelation analysis revealed 47, 439, and 71 DE-miRNA-CTG pairs of high negative correlation in PS, TS and SS, respectively. Through biological process analysis, we finally identified 34, 6, and 76 miRNA-CTG pairs from PS, TS, and SS, respectively, and the miRNA target genes in these pairs regulate or participate lignocellulosic biosynthesis related biological processes: cell division and differentiation, cell wall modification, secondary cell wall biosynthesis, lignification, and programmed cell death processes. This is the first report on an integrated analysis of genome-wide mRNA and miRNA profilings during multiple phases of poplar stem development. Our analysis results imply that individual miRNAs modulate secondary growth and lignocellulosic biosynthesis through regulating transcription factors and lignocellulosic biosynthetic pathway genes, resulting in more dynamic promotion, suppression, or regulatory circuits. This study advanced our understanding of many individual miRNAs and their essential, diversified roles in dynamic regulation of secondary growth in woody tree species.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1373
Author(s):  
Ioan Alexandru Florian ◽  
Andrei Buruiana ◽  
Teodora Larisa Timis ◽  
Sergiu Susman ◽  
Ioan Stefan Florian ◽  
...  

Background: Brain arteriovenous malformations (BAVMs) and cerebral cavernous malformations (CCMs) are rare developmental anomalies of the intracranial vasculature, with an irregular tendency to rupture, and as of yet incompletely deciphered pathophysiology. Because of their variety in location, morphology, and size, as well as unpredictable natural history, they represent a management challenge. MicroRNAs (miRNAs) are strands of non-coding RNA of around 20 nucleotides that are able to modulate the expression of target genes by binding completely or partially to their respective complementary sequences. Recent breakthroughs have been made on elucidating their contribution to BAVM and CCM occurrence, growth, and evolution; however, there are still countless gaps in our understanding of the mechanisms involved. Methods: We have searched the Medline (PubMed; PubMed Central) database for pertinent articles on miRNAs and their putative implications in BAVMs and CCMs. To this purpose, we employed various permutations of the terms and idioms: ‘arteriovenous malformation’, ‘AVM’, and ‘BAVM’, or ‘cavernous malformation’, ‘cavernoma’, and ‘cavernous angioma’ on the one hand; and ‘microRNA’, ‘miRNA’, and ‘miR’ on the other. Using cross-reference search; we then investigated additional articles concerning the individual miRNAs identified in other cerebral diseases. Results: Seven miRNAs were discovered to play a role in BAVMs, three of which were downregulated (miR-18a, miR-137, and miR-195*) and four upregulated (miR-7-5p, miR-199a-5p, miR-200b-3p, and let-7b-3p). Similarly, eight miRNAs were identified in CCM in humans and experimental animal models, two being upregulated (miR-27a and mmu-miR-3472a), and six downregulated (miR-125a, miR-361-5p, miR-370-3p, miR-181a-2-3p, miR-95-3p, and let-7b-3p). Conclusions: The following literature review endeavored to address the recent discoveries related to the various implications of miRNAs in the formation and growth of BAVMs and CCMs. Additionally, by presenting other cerebral pathologies correlated with these miRNAs, it aimed to emphasize the potential directions of upcoming research and biological therapies.


Sign in / Sign up

Export Citation Format

Share Document