scholarly journals Evaluating Awareness and Perception of Botnet Activity within Consumer Internet-of-Things (IoT) Networks

Informatics ◽  
2019 ◽  
Vol 6 (1) ◽  
pp. 8 ◽  
Author(s):  
Christopher McDermott ◽  
John Isaacs ◽  
Andrei Petrovski

The growth of the Internet of Things (IoT), and demand for low-cost, easy-to-deploy devices, has led to the production of swathes of insecure Internet-connected devices. Many can be exploited and leveraged to perform large-scale attacks on the Internet, such as those seen by the Mirai botnet. This paper presents a cross-sectional study of how users value and perceive security and privacy in smart devices found within the IoT. It analyzes user requirements from IoT devices, and the importance placed upon security and privacy. An experimental setup was used to assess user ability to detect threats, in the context of technical knowledge and experience. It clearly demonstrated that without any clear signs when an IoT device was infected, it was very difficult for consumers to detect and be situationally aware of threats exploiting home networks. It also demonstrated that without adequate presentation of data to users, there is no clear correlation between level of technical knowledge and ability to detect infected devices.

Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5897
Author(s):  
Shantanu Pal ◽  
Michael Hitchens ◽  
Tahiry Rabehaja ◽  
Subhas Mukhopadhyay

There has been a tremendous growth in the number of smart devices and their applications (e.g., smart sensors, wearable devices, smart phones, smart cars, etc.) in use in our everyday lives. This is accompanied by a new form of interconnection between the physical and digital worlds, commonly known as the Internet of Things (IoT). This is a paradigm shift, where anything and everything can be interconnected via a communication medium. In such systems, security is a prime concern and protecting the resources (e.g., applications and services) from unauthorized access needs appropriately designed security and privacy solutions. Building secure systems for the IoT can only be achieved through a thorough understanding of the particular needs of such systems. The state of the art is lacking a systematic analysis of the security requirements for the IoT. Motivated by this, in this paper, we present a systematic approach to understand the security requirements for the IoT, which will help designing secure IoT systems for the future. In developing these requirements, we provide different scenarios and outline potential threats and attacks within the IoT. Based on the characteristics of the IoT, we group the possible threats and attacks into five areas, namely communications, device/services, users, mobility and integration of resources. We then examine the existing security requirements for IoT presented in the literature and detail our approach for security requirements for the IoT. We argue that by adhering to the proposed requirements, an IoT system can be designed securely by achieving much of the promised benefits of scalability, usability, connectivity, and flexibility in a practical and comprehensive manner.


2015 ◽  
Vol 2015 (1) ◽  
pp. 000006-000013 ◽  
Author(s):  
Val R. Marinov

The Internet of Things (IoT) “things” are often times described as active or smart devices and objects augmented with sensing, processing, and network capabilities. These smart objects are in the heart of the IoT concept but they alone cannot realize the full potential of IoT. The most ubiquitous objects in the IoT ecosystem, those that reside at the lowest system level and interact with the higher-level smart object, are based on the passive RFID technology. In the form of wireless passive sensors these objects are found in smart packaging, they form the backbone of the structural health monitoring systems, they provide non-invasive and continuous monitoring of physiological parameters, etc. RFID capability is already added to everyday items in the physical form of adhesive “smart” labels, enabling them to become “citizens” of the IoT ecosystem, but this “add-on“ approach increases the implementation cost and oftentimes impacts negatively the host item's form factor and appearance. It also does very little in terms of security and counterfeit prevention. On the other hand, the key economic factor that drives the deployment of the IoT is the cost at the end points. Therefore, the future of the IoT depends on developing an ultra-low-cost technology solution that can mass-produce low cost, RFID-enabled IoT objects on flexible substrates, ready for integration into everyday items. In some cases, such as in intelligent packaging, these objects will be non-obstructive and seamlessly integrated in their hosts. This integration will minimize the cost of implementation and will provide an insurmountable barrier to counterfeiters as they will need access to sophisticated and capital-intensive technologies in order to be able to alter or replicate the product's embedded configuration. Presented are two disruptive processes for packaging of ultrathin flexible hybrid electronic systems with ICs as thin as 15–20 μm and as small as 250 μm per side. The first generation technology is a modification of the conventional pick-and-place technique and has been already demonstrated on a commercial-grade roll-to-roll assembly line with packaging rates exceeding 10,000 cph. The second generation technology uses a laser beam to scan and transfer ultrathin, ultra-small ICs for high-precision assembly onto various flexible and rigid substrates. It provides packaging rates significantly exceeding those of the conventional pick-and-place equipment. Reported are also results from integrating the resulting ultrathin flexible hybrid electronic devices into thin materials such as paper and plastics.


2020 ◽  
Vol 10 (21) ◽  
pp. 7699
Author(s):  
Shin-Hung Pan ◽  
Shu-Ching Wang

Because the Internet of Things (IoT) can provide a global service network through various smart devices, the IoT has been widely used in smart transportation, smart cities, smart healthcare, and factory automation through the Internet connection. With the large-scale establishment and 5G (fifth generation) wireless networks, the cellular Internet of Things (CIoT) will continue to be developed and applied to a wide range of applications. In order to provide a reliable application of CIoT, a safe and reliable network topology MECIoT is proposed in this study. To improve the reliability and fault-tolerant capability of the network proposed, the problem of reaching agreement should be revisited. Therefore, the applications in the system can still be performed correctly even if some processing units (PUs) in the system have failed. In this study, a new protocol is proposed to allow all normal PUs in MECIoT to reach an agreement with the minimum amount of data exchanges required and the maximum number of failed PUs allowed in MECIoT. In the end, the optimality of the protocol has been proven by mathematical method.


2021 ◽  
Author(s):  
Yuanguo Wang ◽  
Xiaogang Jiang ◽  
Qian Yu ◽  
Xiuling Zhang ◽  
Bailu Zhao ◽  
...  

Abstract Due to its huge application potential, the Internet of Things has received extensive attention from governments, academia and industry. The core concepts of the Internet of Things are perception, control, transmission and intelligence. Through technical means, the coordination of things and things, people and things, and people and people has been realized, thus forming a network based on sensor networks, the Internet, and mobile communication networks. A larger complex network system. However, restricted by the characteristics of network structure, terminal equipment, communication methods, application scenarios, etc., some security and privacy issues unique to the Internet of Things cannot be directly solved by existing Internet security technologies. Aiming at the general high complexity of existing algorithms, this article starts with the different phase-frequency characteristics of different filters, and designs a new low-complexity reduction system algorithm. According to the characteristics of the system that the filter structure can be flexibly selected, the method randomly allocates different filters to each sub-carrier and adjusts the phase of signal superimposition, thereby constructing a coordinated communication facility and management service coordination suitable for large-scale distributed IoT services. The interactive access control architecture realizes the confidentiality of data exchange between services.


Author(s):  
Azeem Khan ◽  
N. Z. Jhanjhi ◽  
Mamoona Humayun ◽  
Muneer Ahmad

The acronym IoT stands for internet of things. The IoT ecosystem can be envisioned as a set of physical electronic devices embedded with intelligence, connected through a network, enabling them to collect and exchange data, and allowing these devices to be sensed and handled remotely between the physical and cyber worlds. The devices connected through the internet has been influencing all walks of our life ranging from individual, societal, educational, industrial, entrepreneurial, and related to governance as well. As we are connected and surrounded with a plethora of connected smart devices, it seems there is a great risk of security and privacy in several aspects, such as device authentication, data theft, device manipulation, data falsification, etc., to name a few. Hence, the current chapter has been undertaken to explore and comprehend the security and privacy related implications, opportunities, future directions, and challenges involved in implementing digital governance with IoT.


CONVERTER ◽  
2021 ◽  
pp. 70-79
Author(s):  
Dongxian Yu, Jiatao Kang, Junlei Dong

The Internet of Things in the industrial industry has attracted widespread attention from the government, academia, and industry due to its huge application prospects. The core ideas of the Internet of things are perception, control, transmission and intelligence. Through technical means to achieve the coordination between things, people and things, and people, so as to form a larger complex network system on the basis of sensor network, Internet and mobile communication network. The data Shared by Internet of things information is closely related to personal life behaviors, and the information has a greater perceived correlation with each other. This kind of sensibility and sensitivity put forward higher requirements for the security and privacy protection of Internet of things information sharing. However, due to the characteristics of network structure, terminal equipment, communication mode and application scenario, some security and privacy issues unique to the Internet of things cannot be solved directly through existing Internet security technologies. It is necessary to conduct in-depth research on the key technologies of Internet of things security and privacy protection. This article briefly describes the Internet of things security and privacy issues, then, it gives the research and application status of Internet of things security and privacy protection at home and abroad, then lists the key technical problems in Internet of things security and privacy protection. And for communication between large scale collaborative services. Based on publish/subscribe paradigm, this paper constructs collaborative communication facilities of Internet of things services suitable for large-scale distribution, and an access control architecture for managing service synergy interactions, achieve confidentiality of data exchange between services and privacy protection of service policies.


Drones ◽  
2022 ◽  
Vol 6 (1) ◽  
pp. 12
Author(s):  
Naomi A. Ubina ◽  
Shyi-Chyi Cheng

This paper aims to provide an overview of the capabilities of unmanned systems to monitor and manage aquaculture farms that support precision aquaculture using the Internet of Things. The locations of aquaculture farms are diverse, which is a big challenge on accessibility. For offshore fish cages, there is a difficulty and risk in the continuous monitoring considering the presence of waves, water currents, and other underwater environmental factors. Aquaculture farm management and surveillance operations require collecting data on water quality, water pollutants, water temperature, fish behavior, and current/wave velocity, which requires tremendous labor cost, and effort. Unmanned vehicle technologies provide greater efficiency and accuracy to execute these functions. They are even capable of cage detection and illegal fishing surveillance when equipped with sensors and other technologies. Additionally, to provide a more large-scale scope, this document explores the capacity of unmanned vehicles as a communication gateway to facilitate offshore cages equipped with robust, low-cost sensors capable of underwater and in-air wireless connectivity. The capabilities of existing commercial systems, the Internet of Things, and artificial intelligence combined with drones are also presented to provide a precise aquaculture framework.


Author(s):  
Aaron Perzanowski ◽  
Jason Schultz

The smart devices that make up the Internet of Things induce consumers to cede control over the products they buy. Devices like smartphones offer real benefits, but combined with embedded software, network connectivity, microscopic sensors and large-scale data analytics, they pose serious threats to ownership and consumer welfare. From coffee makers and toys to cars and medical devices, the products we buy are defined by software. That code gives device makers an increasing degree of control over how, when, and whether those products can be used even after consumers buy them. That shift of control has profound implications for ownership.


2017 ◽  
Vol 2017 ◽  
pp. 1-20 ◽  
Author(s):  
Jorge Bernal Bernabe ◽  
Jose L. Hernandez-Ramos ◽  
Antonio F. Skarmeta Gomez

Security and privacy concerns are becoming an important barrier for large scale adoption and deployment of the Internet of Things. To address this issue, the identity management system defined herein provides a novel holistic and privacy-preserving solution aiming to cope with heterogeneous scenarios that requires both traditional online access control and authentication, along with claim-based approach for M2M (machine to machine) interactions required in IoT. It combines a cryptographic approach for claim-based authentication using the Idemix anonymous credential system, together with classic IdM mechanisms by relying on the FIWARE IdM (Keyrock). This symbiosis endows the IdM system with advanced features such as privacy-preserving, minimal disclosure, zero-knowledge proofs, unlikability, confidentiality, pseudonymity, strong authentication, user consent, and offline M2M transactions. The IdM system has been specially tailored for the Internet of Things bearing in mind the management of both users’ and smart objects’ identity. Moreover, the IdM system has been successfully implemented, deployed, and tested in the scope of SocIoTal European research project.


Author(s):  
Ulrika Linderhed ◽  
Ioannis Petsagkourakis ◽  
Peter Andersson Ersman ◽  
Valerio Beni ◽  
Klas Tybrandt

Abstract The advent of the Internet of Things and the growing interest in continuous monitoring by wearables have created a need for conformable and stretchable displays. Electrochromic displays (ECDs) are receiving attention as a cost-effective solution for many simple applications. However, stretchable ECDs have yet to be produced in a robust, large scale and cost-efficient manner. Here we develop a process for making fully screen printed stretchable ECDs. By evaluating commercially available inks with respect to electromechanical properties, including electrochromic PEDOT:PSS inks, our process can be directly applied in the manufacturing of stretchable organic electronic devices. The manufactured ECDs retained colour contrast with useful switching times at static strains up to 50 % and strain cycling up to 30 % strain. To further demonstrate the applicability of the technology, double-digit 7-segment ECDs were produced, which could conform to curved surfaces and be mounted onto stretchable fabrics while remaining fully functional. Based on their simplicity, robustness and processability, we believe that low cost printed stretchable ECDs can be easily scaled up and will find many applications within the rapidly growing markets of wearable electronics and the Internet of Things.


Sign in / Sign up

Export Citation Format

Share Document