scholarly journals Behavior of Compacted Magnesium-Based Powders for Energy-Storage Applications

Inorganics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 54 ◽  
Author(s):  
Daniele Mirabile Gattia ◽  
Mukesh Jangir ◽  
Indra Prabh Jain

Energy storage is one of the main challenges to address in the near future—in particular due to the intermittent energy produced by extensive renewable energy production plants. The use of hydrides for this type of energy storage has many positive aspects. Hydride-based systems consist of absorption and desorption reactions that are strongly exothermic and endothermic, respectively. Heat management in the design of hydrogen storage tanks is an important issue, in order to ensure high-level performance in terms of the kinetics for hydrogen release/uptake and reasonable storage capacity. When loose powder is used, material in the form of pellets should be considered in order to avoid detrimental effects including decreased cycling performance. Moreover, sustainable materials in large-scale hydrogen reactors could be recovered and reused to improve any life cycle analysis of such systems. For these reasons, magnesium hydride was used in this study, as it is particularly suitable for hydrogen storage due to its high H2 storage capacity, reversibility and the low costs. Magnesium hydride was ball-milled in presence of 5 wt % Fe as a catalyst, then compacted with an uniaxial press after the addition of expanded natural graphite (ENG). The materials underwent 45 cycles in a Sievert’s type apparatus at 310 °C and eight bar, in order to study the kinetics and cycling stability. Scanning electron microscopy was used to investigate microstructural properties and failure phenomena. Together with Rietveld analysis, X-ray diffraction was performed for phase identification and structural information. The pellets demonstrated suitable cycling stability in terms of total hydrogen storage capacity and kinetics.

2020 ◽  
Vol 10 (24) ◽  
pp. 8962
Author(s):  
Mohammad Reza Ghaani ◽  
Satoshi Takeya ◽  
Niall J. English

There have been studies on gas-phase promoter facilitation of H2-containing clathrates. In the present study, non-equilibrium molecular dynamics (NEMD) simulations were conducted to analyse hydrogen release and uptake from/into propane planar clathrate surfaces at 180–273 K. The kinetics of the formation of propane hydrate as the host for hydrogen as well as hydrogen uptake into this framework was investigated experimentally using a fixed-bed reactor. The experimental hydrogen storage capacity propane hydrate was found to be around 1.04 wt% in compare with the theoretical expected 1.13 wt% storage capacity of propane hydrate. As a result, we advocate some limitation of gas-dispersion (fixed-bed) reactors such as the possibility of having un-reacted water as well as limited diffusion of hydrogen in the bulk hydrate.


RSC Advances ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 408-428 ◽  
Author(s):  
Jianfeng Zhang ◽  
Zhinian Li ◽  
Yuanfang Wu ◽  
Xiumei Guo ◽  
Jianhua Ye ◽  
...  

Magnesium hydride and its compounds have a high hydrogen storage capacity and are inexpensive, and thus have been considered as one of the most promising hydrogen storage materials for on-board applications.


2019 ◽  
Author(s):  
Roland Hermann Pawelke

<p>This article outlines a potent theoretical formalism illuminating the boundaries to reversible solid hydrogen storage based on the ideal gas law and classic equilibrium thermodynamics. A global picture of chemical reversible hydrogen sorption is unveiled including a thermodynamic explanation of partial reversibility. This is utilized to elucidate a multitude of issues from metal hydride chemistry: Highlights are why the substitution of a mere 4 mol % Na by K in Ti-doped NaAlH<sub>4</sub> raises the reversible storage capacity by 42 % and elaboration of the reaction pathway in (Rb/K)H-doped Mg(NH<sub>2</sub>)<sub>2</sub>/2LiH. The findings of this work allow for a change of paradigm towards the understanding of reversible chemical energy storage and provide a hitherto missing tool of ample analytic and predictive power, complementary to experiment.</p>


2021 ◽  
Vol 8 ◽  
Author(s):  
Lu Han ◽  
Xu Chen ◽  
Shijie Zeng ◽  
Jia Liu ◽  
Zhongli Yang ◽  
...  

Carbon-based materials are usually considered as conventional electrode materials for supercapacitors (SCs), therefore it is meaningful to enhance supercapacitive capacity and cycling stability via rational surface structure design of carbon-based materials. The bio-inspired coral-like porous carbon structure has attracted much attention recently in that it can offer large surface area for ion accommodation and favor ions-diffusion, promoting its energy storage capacity. Herein, we designed a superiorly hydrophilic B, N dual doped coral-like carbon framework (BN-CCF) and studied its surface wettability via low-field nuclear magnetic resonance relaxation technique. The unique coral-like micro-nano structure and B, N dual doping in carbon framework can enhance its pseudocapacitance and improve surface wettability. Therefore, when used as electrodes of SCs, the BN-CCF displays 457.5 F g−1 at 0.5 A g−1, even when current density increases 20 folds, it still exhibits high capacitance retention of 66.1% and superior cycling stability. The symmetrical SCs assembled by BN-CCF electrodes show a high energy density of 14.92 Wh kg−1 (600 W kg−1). In this work, simple structural regulation with B, N dual doping and surface wettability should be considered as effective strategy to enhance energy storage capacity of carbon-based SCs.


2021 ◽  
Vol 9 ◽  
Author(s):  
Deyi Jiang ◽  
Shao Chen ◽  
Wenhao Liu ◽  
Yiwei Ren ◽  
Pengyv Guo ◽  
...  

In response to the Paris climate agreement, the Chinese government has taken actions to improve the energy structure by reducing the share of coal-fired thermal power and increasing the use of clean energy. However, due to the extreme shortage of large-scale energy storage facilities, the utilization efficiency of wind and solar power remains low. This paper proposes to use abandoned coal mine goafs serving as large-scale pumped hydro storage (PHS) reservoir. In this paper, suitability of coal mine goafs as PHS underground reservoirs was analyzed with respects to the storage capacity, usable capacity, and ventilation between goaf and outside. The storage capacity is 1.97 × 106 m3 for a typical mining area with an extent of 3 × 5 km2 and a coal seam thickness of 6 m. A typical goaf-PHS system with the energy type αw=0.74 has a performance of 82.8% in the case of annual operation, able to regulate solar-wind energy with an average value of 275 kW. The performance of the proposed goaf-PHS system was analyzed based on the reservoir estimation and meteorological information from a typical region in China. It has been found that using abandoned coal mine goafs to develop PHS plants is technically feasible in wind and solar-rich northwestern and southwestern China.


2018 ◽  
Vol 1 (4) ◽  
pp. 1658-1663 ◽  
Author(s):  
Xuesong Yin ◽  
James Robert Jennings ◽  
Wei Tang ◽  
Tang Jiao Huang ◽  
Chunhua Tang ◽  
...  

2019 ◽  
Author(s):  
Roland Hermann Pawelke

<p>This article outlines a potent theoretical formalism illuminating the boundaries to reversible solid hydrogen storage based on the ideal gas law and classic equilibrium thermodynamics. A global picture of chemical reversible hydrogen sorption is unveiled including a thermodynamic explanation of partial reversibility. This is utilized to elucidate a multitude of issues from metal hydride chemistry: Highlights are why the substitution of a mere 4 mol % Na by K in Ti-doped NaAlH<sub>4</sub> raises the reversible storage capacity by 42 % and elaboration of the reaction pathway in (Rb/K)H-doped Mg(NH<sub>2</sub>)<sub>2</sub>/2LiH. The findings of this work allow for a change of paradigm towards the understanding of reversible chemical energy storage and provide a hitherto missing tool of ample analytic and predictive power, complementary to experiment.</p>


2019 ◽  
Author(s):  
Roland Hermann Pawelke

<p>This article outlines a potent theoretical formalism illuminating the boundaries to reversible solid hydrogen storage based on the ideal gas law and classic equilibrium thermodynamics. A global picture of chemical reversible hydrogen sorption is unveiled including a thermodynamic explanation of partial reversibility. This is utilized to elucidate a multitude of issues from metal hydride chemistry: Highlights are why the substitution of a mere 4 mol % Na by K in Ti-doped NaAlH<sub>4</sub> raises the reversible storage capacity by 42 % and elaboration of the reaction pathway in (Rb/K)H-doped Mg(NH<sub>2</sub>)<sub>2</sub>/2LiH. The findings of this work allow for a change of paradigm towards the understanding of reversible chemical energy storage and provide a hitherto missing tool of ample analytic and predictive power, complementary to experiment.</p>


Sign in / Sign up

Export Citation Format

Share Document