scholarly journals Exposure to Non-Native Tropical Milkweed Promotes Reproductive Development in Migratory Monarch Butterflies

Insects ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 253 ◽  
Author(s):  
Ania A. Majewska ◽  
Sonia Altizer

Background: North American monarchs (Danaus plexippus) are well-known for their long-distance migrations; however, some monarchs within the migratory range have adopted a resident lifestyle and breed year-round at sites where tropical milkweed (Asclepias curassavica) is planted in the southern coastal United States. An important question is whether exposure to exotic milkweed alters monarch migratory physiology, particularly the ability to enter and remain in the hormonally-induced state of reproductive diapause, whereby adults delay reproductive maturity. Cued by cooler temperatures and shorter photoperiods, diapause is a component of the monarch’s migratory syndrome that includes directional flight behavior, lipid accumulation, and the exceptional longevity of the migratory generation. Methods: Here, we experimentally test how exposure to tropical milkweed during the larval and adult stages influences monarch reproductive status during fall migration. Caterpillars reared under fall-like conditions were fed tropical versus native milkweed diets, and wild adult migrants were placed in outdoor flight cages with tropical milkweed, native milkweed, or no milkweed. Results: We found that monarchs exposed to tropical milkweed as larvae were more likely to be reproductively active (exhibit mating behavior in males and develop mature eggs in females) compared to monarchs exposed to native milkweed. Among wild-caught fall migrants, females exposed to tropical milkweed showed greater egg development than females exposed to native or no milkweed, although a similar response was not observed for males. Conclusions: Our study provides evidence that exposure to tropical milkweed can increase monarch reproductive activity, which could promote continued residency at year-round breeding sites and decrease monarch migratory propensity.

PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245665
Author(s):  
Patil Jyothi ◽  
Prabhuraj Aralimarad ◽  
Vijaya Wali ◽  
Shivansh Dave ◽  
M. Bheemanna ◽  
...  

Despite its deleterious impact on farming and agriculture, the physiology and energetics of insect migration is poorly understood due to our inability to track their individual movements in the field. Many insects, e.g. monarch butterflies, Danaus plexippus (L.), are facultative migrants. Hence, it is important to establish whether specific insect populations in particular areas migrate. The polyphagous insect, Helicoverpa armigera (Hübner), is especially interesting in this regard due to its impact on a variety of crops. Here, we used a laboratory-based flight mill assay to show that Helicoverpa armigera populations clearly demonstrate facultative migration in South India. Based on various flight parameters, we categorized male and female moths as long, medium or short distance fliers. A significant proportion of moths exhibited long-distance flight behavior covering more than 10 km in a single night, averaging about 8 flight hours constituting 61% flight time in the test period. The maximum and average flight speeds of these long fliers were greater than in the other categories. Flight activity across sexes also varied; male moths exhibited better performance than female moths. Wing morphometric parameters including forewing length, wing loading, and wing aspect ratio were key in influencing long-distance flight. Whereas forewing length positively correlated with flight distance and duration, wing loading was negatively correlated.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Andrew K. Davis ◽  
Michael T. Holden

Optimal flight in butterflies depends on structural features of the wings and body, including wing size, flight muscle size, and wing loading. Arguably, there is no butterfly for which flight is more important than the monarch (Danaus plexippus), which undergoes long-distance migrations in North America. We examined morphological features of monarchs that would explain the apparent higher migratory success and flight ability of females over males. We examined 47 male and 45 female monarch specimens from a project where monarchs were reared under uniform conditions. We weighed individual body parts, including the thorax (flight muscle) and wings, and computed wing loading and wing thickness for all specimens. When we compared each morphological trait between sexes, we found that females did not differ from males in terms of relative thorax (wing muscle) size. Females were generally smaller than males, but females had relatively thicker wings than males for their size, which suggests greater mechanical strength. Importantly, females had significantly lower wing loading than males (7% lower). This would translate to more efficient flight, which may explain their higher migratory success. Results of this work should be useful for interpreting flight behavior and/or migration success in this and other Lepidopteran species.


2004 ◽  
Vol 20 (3) ◽  
pp. 271-280 ◽  
Author(s):  
Brigitte Gottsberger ◽  
Edith Gruber

The phenology of calling activity and reproduction of a neotropical anuran community in French Guiana was studied during one rainy season. We investigated the correlation between calling activity, rainfall, temperature and water level in two ponds and recorded the occurrence of tadpoles of pond-breeding species. The study site contained 31 calling frog species, which were divided into groups according to reproductive mode. Increased rainfall was associated with increased reproductive activity in all groups, but temporal patterns in calling activity varied significantly between groups. Species with aquatic oviposition exhibited sporadic acoustic activity, aggregating into explosive breeding events following heavy rainfall. Species laying eggs in foam nests had the peak of calling activity at the start of the rainy season. Taxa with embryonic development on vegetation called mainly from middle to late wet season, being the only group which showed a significant correlation of calling with increasing water level. Dendrobatids with terrestrial oviposition and subsequent parental tadpole transportation were continuously active. Species with direct development or with non-feeding larvae were mainly active at the beginning of the rainy season. It is concluded that phenologies of calling activity in South American tropical anuran species are strongly influenced by abiotic factors like rainfall and availability of breeding sites. The temporal limitation of the rainy season forces species to adjust calling and reproductive activity according to their reproductive modes.


2021 ◽  
Vol 118 (16) ◽  
pp. e2024463118
Author(s):  
Anurag A. Agrawal ◽  
Katalin Böröczky ◽  
Meena Haribal ◽  
Amy P. Hastings ◽  
Ronald A. White ◽  
...  

For highly specialized insect herbivores, plant chemical defenses are often co-opted as cues for oviposition and sequestration. In such interactions, can plants evolve novel defenses, pushing herbivores to trade off benefits of specialization with costs of coping with toxins? We tested how variation in milkweed toxins (cardenolides) impacted monarch butterfly (Danaus plexippus) growth, sequestration, and oviposition when consuming tropical milkweed (Asclepias curassavica), one of two critical host plants worldwide. The most abundant leaf toxin, highly apolar and thiazolidine ring–containing voruscharin, accounted for 40% of leaf cardenolides, negatively predicted caterpillar growth, and was not sequestered. Using whole plants and purified voruscharin, we show that monarch caterpillars convert voruscharin to calotropin and calactin in vivo, imposing a burden on growth. As shown by in vitro experiments, this conversion is facilitated by temperature and alkaline pH. We next employed toxin-target site experiments with isolated cardenolides and the monarch’s neural Na+/K+-ATPase, revealing that voruscharin is highly inhibitory compared with several standards and sequestered cardenolides. The monarch’s typical >50-fold enhanced resistance to cardenolides compared with sensitive animals was absent for voruscharin, suggesting highly specific plant defense. Finally, oviposition was greatest on intermediate cardenolide plants, supporting the notion of a trade-off between benefits and costs of sequestration for this highly specialized herbivore. There is apparently ample opportunity for continued coevolution between monarchs and milkweeds, although the diffuse nature of the interaction, due to migration and interaction with multiple milkweeds, may limit the ability of monarchs to counteradapt.


2015 ◽  
Vol 21 (4) ◽  
pp. 271 ◽  
Author(s):  
Gregory R. Johnston ◽  
Maxwell H. Waterman ◽  
Clare E. Manning

Globally, pelican populations have decreased, with three species being of conservation concern. Australian pelicans (Pelecanus conspicillatus) are not regarded as endangered, but have declined across south-eastern Australia. Information on their movements and causes of mortality are required to interpret the importance of these regional declines to the species’ global population. We explored patterns of movement and causes of mortality by analysing recoveries from 14 615 Australian pelicans banded over 37 years between 1969 and 2006. Data from 243 leg band recoveries showed that Australian pelicans move distances of up to 3206 km, and travel across the species’ entire geographic range, within a year of fledging. We found little evidence for the popular notion that these birds move en masse from the coast to inland areas in response to flooding rains. Maximum recorded age of a banded Australian pelican was 15 years. The banding data suggest that the regional pelican declines could reflect long-distance movements rather than an overall population response. However, a concentration of band returns from south-eastern Australia where the declines have been recorded, and the high incidence of human-induced deaths (16.4%) suggest otherwise. Accurate assessment of population trends in long-lived, long-distance nomads such as Australian pelicans requires assessment at a continental scale. Our results emphasise the importance of knowledge about fundamental aspects of a species’ biology for accurate interpretation of regional population declines.


2020 ◽  
Vol 16 (4) ◽  
pp. 20190922 ◽  
Author(s):  
Andrew K. Davis ◽  
Farran M. Smith ◽  
Ashley M. Ballew

For many animals and insects that are experiencing dramatic population declines, the only recourse for conservationists is captive rearing. To ensure success, reared individuals should be biologically indistinct from those in the wild. We tested if this is true with monarch butterflies, Danaus plexippus , which are increasingly being reared for release by citizens and commercial breeders. Since late-summer monarchs should be as migration capable as possible for surviving the arduous long-distance migration, we evaluated four migration-relevant traits across two groups of captive-reared monarchs ( n = 41 and 42) and one group of wild-caught migrants ( n = 41). Monarchs (descendants of wild individuals) were reared from eggs to adulthood either in a warm indoor room next to a window, or in an incubator that mimicked late-summer conditions. Using an apparatus consisting of a perch mounted to an electronic force gauge, we assessed ‘grip strength' of all groups, then used image analysis to measure forewing size, pigmentation and elongation. In three of the four traits, reared monarchs underperformed compared to wild ones, even those reared under conditions that should have produced migration-ready individuals. The average strength of reared monarchs combined was 56% less than the wild group, even when accounting for size. Their orange wing colour was paler (an indicator of poor condition and flight ability) and their forewings were less elongated (elongation is associated with migration propensity) than wild monarchs. The reason(s) behind these effects is unknown but could stem from the frequent disturbance and/or handling of reared monarchs, or the fact that rearing removes the element of natural selection from all stages. Regardless, these results explain prior tagging studies that showed reared monarchs have lower migratory success compared to wild.


Ornis Svecica ◽  
2015 ◽  
Vol 25 (1–2) ◽  
pp. 51-58
Author(s):  
Christos Barboutis ◽  
Leo Larsson ◽  
Åsa Steinholtz ◽  
Thord Fransson

In spring, long-distance migrants are considered to adopt a time-minimizing strategy to promote early arrival at breeding sites. The phenology of spring migration was examined and compared between two insular stopover sites in Greece and Sweden for Icterine Warbler, Wood Warbler, Spotted Flycatcher and Collared Flycatcher. All of them migrate due north which means that some proportion of birds that pass through Greece are heading to Scandinavia. The Collared Flycatcher had the earliest and the Icterine Warbler the latest arrival time. The differences in median dates between Greece and Sweden were 3–4 weeks and the passages in Sweden were generally more condensed in time. The average overall speed estimates were very similar and varied between 129 and 137 km/d. In most of the species higher speed estimates were associated with years when birds arrived late in Greece. After crossing continental Europe birds arrive at the Swedish study site with significantly higher body masses compared to when they arrive in Greece and this might indicate a preparation for arriving at breeding grounds with some overload.


FACETS ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 238-253
Author(s):  
D. T. Tyler Flockhart ◽  
Maxim Larrivée ◽  
Kathleen L. Prudic ◽  
D. Ryan Norris

Monarch butterflies ( Danaus plexippus, Linnaeus, 1758) are comprised of two migratory populations separated by the Rocky Mountains and are renowned for their long-distance movements among the United States, Canada, and Mexico. Both populations have declined over several decades across North America prompting all three countries to evaluate conservation efforts. Monitoring monarch distribution and abundance is a necessary aspect of ongoing management in Canada where they are a species at risk. We used presence-only data from two citizen science data sets to estimate the annual breeding distribution of monarch butterflies in Canada between 2000 and 2015. Monarch breeding distribution in Canada varied widely among years owing to natural variation, and when considering the upper 95% of the probability of occurrence, the annual mean breeding distribution in Canada was 484 943 km2 (min: 173 449 km2; max: 1 425 835 km2). The area of occurrence was approximately an order of magnitude larger in eastern Canada than in western Canada. Habitat restoration for monarch butterflies in Canada should prioritize productive habitats in southern Ontario where monarchs occur annually and, therefore, likely contribute most to the long-term viability of monarchs in eastern North America. Overall, our assessment sets the geographic context to develop successful management strategies for monarchs in Canada.


Sign in / Sign up

Export Citation Format

Share Document