scholarly journals Measuring Intraspecific Variation in Flight-Related Morphology of Monarch Butterflies (Danaus plexippus): Which Sex Has the Best Flying Gear?

2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Andrew K. Davis ◽  
Michael T. Holden

Optimal flight in butterflies depends on structural features of the wings and body, including wing size, flight muscle size, and wing loading. Arguably, there is no butterfly for which flight is more important than the monarch (Danaus plexippus), which undergoes long-distance migrations in North America. We examined morphological features of monarchs that would explain the apparent higher migratory success and flight ability of females over males. We examined 47 male and 45 female monarch specimens from a project where monarchs were reared under uniform conditions. We weighed individual body parts, including the thorax (flight muscle) and wings, and computed wing loading and wing thickness for all specimens. When we compared each morphological trait between sexes, we found that females did not differ from males in terms of relative thorax (wing muscle) size. Females were generally smaller than males, but females had relatively thicker wings than males for their size, which suggests greater mechanical strength. Importantly, females had significantly lower wing loading than males (7% lower). This would translate to more efficient flight, which may explain their higher migratory success. Results of this work should be useful for interpreting flight behavior and/or migration success in this and other Lepidopteran species.

PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245665
Author(s):  
Patil Jyothi ◽  
Prabhuraj Aralimarad ◽  
Vijaya Wali ◽  
Shivansh Dave ◽  
M. Bheemanna ◽  
...  

Despite its deleterious impact on farming and agriculture, the physiology and energetics of insect migration is poorly understood due to our inability to track their individual movements in the field. Many insects, e.g. monarch butterflies, Danaus plexippus (L.), are facultative migrants. Hence, it is important to establish whether specific insect populations in particular areas migrate. The polyphagous insect, Helicoverpa armigera (Hübner), is especially interesting in this regard due to its impact on a variety of crops. Here, we used a laboratory-based flight mill assay to show that Helicoverpa armigera populations clearly demonstrate facultative migration in South India. Based on various flight parameters, we categorized male and female moths as long, medium or short distance fliers. A significant proportion of moths exhibited long-distance flight behavior covering more than 10 km in a single night, averaging about 8 flight hours constituting 61% flight time in the test period. The maximum and average flight speeds of these long fliers were greater than in the other categories. Flight activity across sexes also varied; male moths exhibited better performance than female moths. Wing morphometric parameters including forewing length, wing loading, and wing aspect ratio were key in influencing long-distance flight. Whereas forewing length positively correlated with flight distance and duration, wing loading was negatively correlated.


Insects ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 253 ◽  
Author(s):  
Ania A. Majewska ◽  
Sonia Altizer

Background: North American monarchs (Danaus plexippus) are well-known for their long-distance migrations; however, some monarchs within the migratory range have adopted a resident lifestyle and breed year-round at sites where tropical milkweed (Asclepias curassavica) is planted in the southern coastal United States. An important question is whether exposure to exotic milkweed alters monarch migratory physiology, particularly the ability to enter and remain in the hormonally-induced state of reproductive diapause, whereby adults delay reproductive maturity. Cued by cooler temperatures and shorter photoperiods, diapause is a component of the monarch’s migratory syndrome that includes directional flight behavior, lipid accumulation, and the exceptional longevity of the migratory generation. Methods: Here, we experimentally test how exposure to tropical milkweed during the larval and adult stages influences monarch reproductive status during fall migration. Caterpillars reared under fall-like conditions were fed tropical versus native milkweed diets, and wild adult migrants were placed in outdoor flight cages with tropical milkweed, native milkweed, or no milkweed. Results: We found that monarchs exposed to tropical milkweed as larvae were more likely to be reproductively active (exhibit mating behavior in males and develop mature eggs in females) compared to monarchs exposed to native milkweed. Among wild-caught fall migrants, females exposed to tropical milkweed showed greater egg development than females exposed to native or no milkweed, although a similar response was not observed for males. Conclusions: Our study provides evidence that exposure to tropical milkweed can increase monarch reproductive activity, which could promote continued residency at year-round breeding sites and decrease monarch migratory propensity.


Insects ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 437
Author(s):  
Daniele Sommaggio ◽  
Giuseppe Fusco ◽  
Marco Uliana ◽  
Alessandro Minelli

Gynandromorphs, i.e., individuals with a mix of male and female traits, are common in the wild bees of the genus Megachile (Hymenoptera, Apoidea). We described new transverse gynandromorphs in Megachile pilidens Alfkeen, 1924 and analyze the spatial distribution of body parts with male vs. female phenotype hitherto recorded in the transverse gynandromorphs of the genus Megachile. We identified 10 different arrangements, nine of which are minor variants of a very general pattern, with a combination of male and female traits largely shared by the gynandromorphs recorded in 20 out of 21 Megachile species in our dataset. Based on the recurrence of the same gynandromorph pattern, the current knowledge on sex determination and sex differentiation in the honey bee, and the results of recent gene-knockdown experiments in these insects, we suggest that these composite phenotypes are possibly epigenetic, rather than genetic, mosaics, with individual body parts of either male or female phenotype according to the locally expressed product of the alternative splicing of sex-determining gene transcripts.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jamie M. Cornelius ◽  
Thomas P. Hahn ◽  
Ashley R. Robart ◽  
Ben J. Vernasco ◽  
Dorothy L. Zahor ◽  
...  

Physiological preparations for migration generally reflect migratory strategy. Migrant birds fuel long-distance flight primarily with lipids, but carrying excess fuel is costly; thus, the amount of fat deposited prior to departure often reflects the anticipated flight duration or distance between refueling bouts. Seasonal pre-migratory deposition of fat is well documented in regular seasonal migrants, but is less described for more facultative species. We analyze fat deposits of free-living birds across several taxa of facultative migrants in the songbird subfamily Carduelinae, including house finches (Haemorhous mexicanus), American goldfinches (Spinus tristis), pine siskins (Spinus pinus) and four different North American ecotypes of red crossbills (Loxia curvirostra), to evaluate seasonal fat deposition during facultative migratory periods. Our data suggest that the extent of seasonal fat deposits corresponds with migratory tendency in these facultative taxa. Specifically, nomadic red crossbills with a seasonally predictable annual movement demonstrated relatively large seasonal fat deposits coincident with the migratory periods. In contrast, pine siskins, thought to be more variable in timing and initiation of nomadic movements, had smaller peaks in fat deposits during the migratory season, and the partial migrant American goldfinch and the resident house finch showed no peaks coincident with migratory periods. Within the red crossbills, those ecotypes that are closely associated with pine habitats showed larger peaks in fat deposits coincident with autumn migratory periods and had higher wing loading, whereas those ecotypes associated with spruces, Douglas-fir and hemlocks showed larger peaks coincident with spring migratory periods and lower wing loading. We conclude that population averages of fat deposits do reflect facultative migration strategies in these species, as well as the winter thermogenic challenges at the study locations. A difference in seasonal fattening and wing loading among red crossbill ecotypes is consistent with the possibility that they differ in their migratory biology, and we discuss these differences in light of crossbill reproductive schedules and phenologies of different conifer species.


Genome ◽  
2021 ◽  
pp. 1-9
Author(s):  
Ana Gabriela Jimenez ◽  
Emily Gray Lencyk

The avian pectoralis muscle demonstrates plasticity with regard to size, so that temperate birds facing winter conditions or birds enduring a migration bout tend to have significant increases in the size and mass of this tissue due to muscular hypertrophy. Myonuclear domain (MND), the volume of cytoplasm a myonuclei services, in the pectoralis muscle of birds seems to be altered during thermal stress or changing seasons. However, there is no information available regarding muscle DNA content or ploidy level within the avian pectoralis. Changes in muscle DNA content can be used in this tissue to aid in size and mass changes. Here, we hypothesized that long-distance migrants or temperate residents would use the process of endoreduplication to aid in altering muscle size. Mostly contradictory to our hypotheses, we found no differences in the mean muscle DNA content in any of the 62 species of birds examined in this study. We also found no correlations between mean muscle DNA content and other muscle structural measurements, such as the number of nuclei per millimeter of fiber, myonuclear domain, and fiber cross-sectional area. Thus, while avian muscle seems more phenotypically plastic than mammalian muscle, the biological processes surrounding myonuclear function may be more closely related to those seen in mammals.


2020 ◽  
Vol 16 (4) ◽  
pp. 20190922 ◽  
Author(s):  
Andrew K. Davis ◽  
Farran M. Smith ◽  
Ashley M. Ballew

For many animals and insects that are experiencing dramatic population declines, the only recourse for conservationists is captive rearing. To ensure success, reared individuals should be biologically indistinct from those in the wild. We tested if this is true with monarch butterflies, Danaus plexippus , which are increasingly being reared for release by citizens and commercial breeders. Since late-summer monarchs should be as migration capable as possible for surviving the arduous long-distance migration, we evaluated four migration-relevant traits across two groups of captive-reared monarchs ( n = 41 and 42) and one group of wild-caught migrants ( n = 41). Monarchs (descendants of wild individuals) were reared from eggs to adulthood either in a warm indoor room next to a window, or in an incubator that mimicked late-summer conditions. Using an apparatus consisting of a perch mounted to an electronic force gauge, we assessed ‘grip strength' of all groups, then used image analysis to measure forewing size, pigmentation and elongation. In three of the four traits, reared monarchs underperformed compared to wild ones, even those reared under conditions that should have produced migration-ready individuals. The average strength of reared monarchs combined was 56% less than the wild group, even when accounting for size. Their orange wing colour was paler (an indicator of poor condition and flight ability) and their forewings were less elongated (elongation is associated with migration propensity) than wild monarchs. The reason(s) behind these effects is unknown but could stem from the frequent disturbance and/or handling of reared monarchs, or the fact that rearing removes the element of natural selection from all stages. Regardless, these results explain prior tagging studies that showed reared monarchs have lower migratory success compared to wild.


1970 ◽  
Vol 176 (1044) ◽  
pp. 291-293

It is generally assumed that in multicellular organisms the diversity of the different cell types is the result of different gene activity which becomes manifest in the course of development. This theoretical concept of cell differentiation was developed on the basis of results obtained from a relatively small number of suitable experimental systems. One of them comprises the imaginal disks of the fruitfly Drosophila melanogaster . Imaginal disks are larval primordia in holometabolic insects such as flies and mosquitoes, and consist of densely packed populations of morphologically uniform cells. They give rise to defined structures of the adult body (mainly integument), thus replacing parts of the larva which are almost completely histolysed during metamorphosis. The prospective fate of the various imaginal disks can be tested, for example, by transplantation experiments. Individual disks are removed from larvae of a genetically marked strain and transplanted into the body cavity of another larva with which the transplants undergo metamorphosis. The metamorphosed derivatives of the disks are then found in the abdomen of the fly and can be microscopically identified on the basis of the morphology of bristles, hairs and other structural features of the integument. The same method is applied for examination of the developmental performance of disk fragments. From the results of such experiments the following conclusions are drawn: (1) Individual disks of fully grown larvae, that is larvae which are ready to pupate, are determined (programmed) for exactly defined body parts of the adult organism. (2) The individual subregions of such a body part can be localized precisely within a disk. Based on these facts fate maps (anlage plans) can be worked out. (3) From experiments in which different genetically marked disks are intermingled and then transplanted into larvae it is concluded that even single cells are determined for structures of a specific body region.


2010 ◽  
Vol 103 (6) ◽  
pp. 3389-3397 ◽  
Author(s):  
Stefania Bracci ◽  
Magdalena Ietswaart ◽  
Marius V. Peelen ◽  
Cristiana Cavina-Pratesi

Accumulating evidence points to a map of visual regions encoding specific categories of objects. For example, a region in the human extrastriate visual cortex, the extrastriate body area (EBA), has been implicated in the visual processing of bodies and body parts. Although in the monkey, neurons selective for hands have been reported, in humans it is unclear whether areas selective for individual body parts such as the hand exist. Here, we conducted two functional MRI experiments to test for hand-preferring responses in the human extrastriate visual cortex. We found evidence for a hand-preferring region in left lateral occipitotemporal cortex in all 14 participants. This region, located in the lateral occipital sulcus, partially overlapped with left EBA, but could be functionally and anatomically dissociated from it. In experiment 2, we further investigated the functional profile of hand- and body-preferring regions by measuring responses to hands, fingers, feet, assorted body parts (arms, legs, torsos), and non-biological handlike stimuli such as robotic hands. The hand-preferring region responded most strongly to hands, followed by robotic hands, fingers, and feet, whereas its response to assorted body parts did not significantly differ from baseline. By contrast, EBA responded most strongly to body parts, followed by hands and feet, and did not significantly respond to robotic hands or fingers. Together, these results provide evidence for a representation of the hand in extrastriate visual cortex that is distinct from the representation of other body parts.


Sign in / Sign up

Export Citation Format

Share Document