scholarly journals Automated Applications of Acoustics for Stored Product Insect Detection, Monitoring, and Management

Insects ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 259
Author(s):  
Richard Mankin ◽  
David Hagstrum ◽  
Min Guo ◽  
Panagiotis Eliopoulos ◽  
Anastasia Njoroge

Acoustic technology provides information difficult to obtain about stored insect behavior, physiology, abundance, and distribution. For example, acoustic detection of immature insects feeding hidden within grain is helpful for accurate monitoring because they can be more abundant than adults and be present in samples without adults. Modern engineering and acoustics have been incorporated into decision support systems for stored product insect management, but with somewhat limited use due to device costs and the skills needed to interpret the data collected. However, inexpensive modern tools may facilitate further incorporation of acoustic technology into the mainstream of pest management and precision agriculture. One such system was tested herein to describe Sitophilus oryzae (Coleoptera: Curculionidae) adult and larval movement and feeding in stored grain. Development of improved methods to identify sounds of targeted pest insects, distinguishing them from each other and from background noise, is an active area of current research. The most powerful of the new methods may be machine learning. The methods have different strengths and weaknesses depending on the types of background noise and the signal characteristic of target insect sounds. It is likely that they will facilitate automation of detection and decrease costs of managing stored product insects in the future.

2017 ◽  
Vol 8 (2) ◽  
pp. 481-486 ◽  
Author(s):  
J. Lamour ◽  
O. Naud ◽  
M. Lechaudel ◽  
B. Tisseyre

Precision agriculture for banana crops has been little investigated so far. The main difficulty to implement precision agriculture methods lies in the asynchronicity of this crop: after a few cycles, each plant has its own development stage in the field. Indeed, maps of agronomical interest are difficult to produce from plant responses without implementing new methods. The present study explores the feasibility to derive a spatially relevant indicator from the date of flowering and the date of maturity (time to harvest). The time between these dates (TFM) may give insight in spatial distribution of vigor. The study was carried out using production data from 2015 acquired in a farm from Cameroon. Data from individual plants that flowered at different weeks were gathered so as to increase the density of TFM sampling. The temporal variability of TFM, which is induced by weather and operational constraints, was compensated by centering TFM data on their medians (TFMc). The mapping of TFMc was obtained using a classical kriging method. Spatial structures highlighted by TFMc either at the farm level or at the plot level, suggest that such maps could be used to support agronomic decisions.


2014 ◽  
Vol 77 (1) ◽  
pp. 87-93 ◽  
Author(s):  
NICKOLAS G. KAVALLIERATOS ◽  
CHRISTOS G. ATHANASSIOU ◽  
MARIA M. AOUNTALA ◽  
DEMETRIUS C. KONTODIMAS

The entomopathogenic fungi Beauveria bassiana, Metarhizium anisopliae, and Isaria fumosorosea were tested against the stored-grain pest Sitophilus oryzae. The fungi were isolated from the soil (from three locations in Attica, Greece: B. bassiana from Tatoion, M. anisopliae from Marathon, and I. fumosorosea from Aghios Stefanos) using larvae of Galleria mellonella as bait. Suspensions of 2.11 × 107 and 2.11 × 108, 1.77 × 107 and 1.77 × 108, and 1.81 × 107 and 1.81 × 108 conidia per ml of B. bassiana, M. anisopliae, and I. fumosorosea, respectively, were applied by three treatments: (i) sprayed on food and set in petri dishes with adults of S. oryzae, (ii) sprayed on adults of S. oryzae and set in petri dishes without food, and (iii) sprayed on adults of S. oryzae and set in petri dishes with food. The observed mortality of S. oryzae adults during the overall exposure period for the lowest, as well as for the highest, concentrations of B. bassiana, M. anisopliae, and I. fumosorosea ranged from 0 to 100%. Concentration was, in most of the cases tested, a critical parameter that determined the “speed of kill” of the exposed insect species for B. bassiana and M. anisopliae. Conversely, concentration was not that critical for I. fumosorosea, and survival was high in some of the combinations tested, even after 14 days of exposure. Both in the highest and the lowest concentrations of fungi, the mortality of S. oryzae adults was higher when the fungi were applied on adults than when they were applied on food. Higher mortality was observed when food was absent than when food was present, in most of the cases tested. The high efficacy levels recorded in the current study indicate that the tested fungi could be effective biocontrol agents against S. oryzae.


Insects ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 187 ◽  
Author(s):  
Yoshinori Matsuda ◽  
Yoshihiro Takikawa ◽  
Koji Kakutani ◽  
Teruo Nonomura ◽  
Hideyoshi Toyoda

The present study was conducted to establish an electrostatic-based experimental system to enable new investigations of insect behavior. The instrument consists of an insulated conducting copper ring (ICR) linked to a direct current voltage generator to supply a negative charge to an ICR and a grounded aluminum pole (AP) passed vertically through the center of the horizontal ICR. An electric field was formed between the ICR and the AP. Rice weevil (Sitophilus oryzae) was selected as a model insect due to its habit of climbing erect poles. The electric field produced a force that could be imposed on the insect. In fact, the negative electricity (free electrons) was forced out of the insect to polarize its body positively. Eventually, the insect was attracted to the oppositely charged ICR. The force became weaker on the lower regions of the pole; the insects sensed the weaker force with their antennae, quickly stopped climbing, and retraced their steps. These behaviors led to a pole-ascending–descending action by the insect, which was highly reproducible and precisely corresponded to the changed expansion of the electric field. Other pole-climbing insects including the cigarette beetle (Lasioderma serricorne), which was shown to adopt the same behavior.


2020 ◽  
Vol 9 (3) ◽  
pp. 151
Author(s):  
Nadeem Fareed ◽  
Khushbakht Rehman

Automated feature extraction from drone-based image point clouds (DIPC) is of paramount importance in precision agriculture (PA). PA is blessed with mechanized row seedlings to attain maximum yield and best management practices. Therefore, automated plantation rows extraction is essential in crop harvesting, pest management, and plant grow-rate predictions. Most of the existing research is consists on red, green, and blue (RGB) image-based solutions to extract plantation rows with the minimal background noise of test study sites. DIPC-based DSM row extraction solutions have not been tested frequently. In this research work, an automated method is designed to extract plantation row from DIPC-based DSM. The chosen plantation compartments have three different levels of background noise in UAVs images, therefore, methodology was tested under different background noises. The extraction results were quantified in terms of completeness, correctness, quality, and F1-score values. The case study revealed the potential of DIPC-based solution to extraction the plantation rows with an F1-score value of 0.94 for a plantation compartment with minimal background noises, 0.91 value for a highly noised compartment, and 0.85 for a compartment where DIPC was compromised. The evaluation suggests that DSM-based solutions are robust as compared to RGB image-based solutions to extract plantation-rows. Additionally, DSM-based solutions can be further extended to assess the plantation rows surface deformation caused by humans and machines and state-of-the-art is redefined.


Author(s):  
Yacoub Ahmad Batta

The present research is aimed at a formulation of the entomopathogenic fungi, Beauveria bassiana (Bal.) Vuillemin and Metarhizium anisopliae (Metch.) Sorokin, in two types of diatomaceous earth dusts, fossil shield and Silico-Sec, are then applied against the adults of three species of stored-grain insects: Sitophilus oryzae L., Rhyzopertha dominica Fab. and Tribolium castaneum Herbs. Effect of the treatment was assessed by comparing the mortality percentage of the adults of the three insect species exposed to the formulated fungi with that of the adults exposed to the unformulated fungi or the diatomaceous earth dusts or the undisturbed control. Results obtained from these exposures have indicated that treatment of the adults with the formulated fungi resulted in a significantly higher mean mortality percentage compared to the treatment with the unformulated fungi or the diatomaceous earth dusts or the undisturbed control. A synergistic interaction between the effect of fungal species and the diatomaceous earth dusts was shown. Viability of conidia of both fungal species in diatomaceous earth dusts was assessed by calculating the germination percentage of the conidia over time. Results indicated a small loss of mean germination percentage for formulated conidia of both fungal species versus a high loss of mean germination percentage for the unformulated conidia, thus the diatomaceous earth dusts used in the formulation of both fungi demonstrated a negligible effect on the viability of formulated conidia compared to the unformulated.


Author(s):  
Tahany G. M. Mohammed ◽  
M. E. H. Nasr

Nanotechnology has enormous potential for developing alternative pest control strategies and reducing the risk of insecticide molecules. The present study aimed to develop a stable nanoemulsion (NE) of eucalyptus oil (EO) by the spontaneous emulsification method and evaluate its insecticidal and repellent effect against Sitophilus oryzae (L.), Rhizopertha dominica (F.) and Tribolium-castaneum (Herbst.). The prepared nanoemulsion formulation having a small particle size 8.57 nm with polydispersity index (PDI) 0.28. The study of the stability and physicochemical properties showed that the prepared formulation had good physical stability without any change in the macroscopic parameters. In addition, results showed that theinsecticidal activity of the prepared NE was higher than the original EO against the three tested insect speciesand the mortality increased with increasing concentrations and extending of exposure time. The contact toxicity of NE film revealed that, adults of R. dominica was more susceptible to all treatments followed by S. oryzae adults, while adults of T. castaneum was the least susceptible one, however, adults of S. oryzae was more susceptible followed by T. castaneum adults while, adults of                    R. dominica was the least susceptible one according to the fumigant toxicity and repellency. Our results suggested that the prepared formulation may be used in an integrated pest managementprogramfor controlling stored grain insects.


F1000Research ◽  
2015 ◽  
Vol 4 ◽  
pp. 1030 ◽  
Author(s):  
Thomas Cokelaer ◽  
Mukesh Bansal ◽  
Christopher Bare ◽  
Erhan Bilal ◽  
Brian M. Bot ◽  
...  

DREAM challenges are community competitions designed to advance computational methods and address fundamental questions in system biology and translational medicine. Each challenge asks participants to develop and apply computational methods to either predict unobserved outcomes or to identify unknown model parameters given a set of training data. Computational methods are evaluated using an automated scoring metric, scores are posted to a public leaderboard, and methods are published to facilitate community discussions on how to build improved methods. By engaging participants from a wide range of science and engineering backgrounds, DREAM challenges can comparatively evaluate a wide range of statistical, machine learning, and biophysical methods. Here, we describe DREAMTools, a Python package for evaluating DREAM challenge scoring metrics. DREAMTools provides a command line interface that enables researchers to test new methods on past challenges, as well as a framework for scoring new challenges. As of September 2015, DREAMTools includes more than 80% of completed DREAM challenges. DREAMTools complements the data, metadata, and software tools available at the DREAM website http://dreamchallenges.org and on the Synapse platform https://www.synapse.org.Availability: DREAMTools is a Python package. Releases and documentation are available at http://pypi.python.org/pypi/dreamtools. The source code is available at http://github.com/dreamtools.


2017 ◽  
Author(s):  
Rand R. Wilcox ◽  
Guillaume A. Rousselet

ABSTRACTThere is a vast array of new and improved methods for comparing groups and studying associations that offer the potential for substantially increasing power, providing improved control over the probability of a Type I error, and yielding a deeper and more nuanced understanding of neuroscience data. These new techniques effectively deal with four insights into when and why conventional methods can be unsatisfactory. But for the non-statistician, the vast array of new and improved techniques for comparing groups and studying associations can seem daunting, simply because there are so many new methods that are now available. The paper briefly reviews when and why conventional methods can have relatively low power and yield misleading results. The main goal is to suggest some general guidelines regarding when, how and why certain modern techniques might be used.


Sign in / Sign up

Export Citation Format

Share Document