scholarly journals The Impact of Cattaneo–Christov Double Diffusion on Oldroyd-B Fluid Flow over a Stretching Sheet with Thermophoretic Particle Deposition and Relaxation Chemical Reaction

Inventions ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 95
Author(s):  
Bheemasandra M. Shankaralingappa ◽  
Ballajja C. Prasannakumara ◽  
Bijjanal J. Gireesha ◽  
Ioannis E. Sarris

The current study focuses on the characteristics of flow, heat, and mass transfer in the context of their applications. There has been a lot of interest in the use of non-Newtonian fluids in biological and technical disciplines. Having such a substantial interest in non-Newtonian fluids, our goal is to explore the flow of Oldroyd-B liquid over a stretching sheet by considering Cattaneo–Christov double diffusion and heat source/sink. Furthermore, the relaxation chemical reaction and thermophoretic particle deposition are considered in the modelling. The equations that represent the indicated flow are changed to ordinary differential equations (ODEs) by choosing relevant similarity variables. The reduced equations are solved using the Runge–Kutta–Fehlberg fourth–fifth order technique (RKF-45) and a shooting scheme. Physical descriptions are strategized and argued using graphical representations to provide a clear understanding of the behaviour of dimensionless parameters on dimensionless velocity, concentration, and temperature profiles. The results reveal that the rising values of the rotation parameter lead to a decline in the fluid velocity. The rise in values of relaxation time parameters of temperature and concentration decreases the thermal and concentration profiles, respectively. The increase in values of the heat source/sink parameter advances the thermal profile. The rise in values of the thermophoretic and chemical reaction rate parameters declines the concentration profile.

2018 ◽  
Vol 8 (12) ◽  
pp. 2588 ◽  
Author(s):  
Sayer Alharbi ◽  
Abdullah Dawar ◽  
Zahir Shah ◽  
Waris Khan ◽  
Muhammad Idrees ◽  
...  

In this article, we have briefly examined the entropy generation in magnetohydrodynamic (MHD) Eyring–Powell fluid over an unsteady oscillating porous stretching sheet. The impact of thermal radiation and heat source/sink are taken in this investigation. The impact of embedded parameters on velocity function, temperature function, entropy generation rate, and Bejan number are deliberated through graphs, and discussed as well. By studying the entropy generation in magnetohydrodynamic Eyring–Powell fluid over an unsteady oscillating porous stretching sheet, the entropy generation rate is reduced with escalation in porosity, thermal radiation, and magnetic parameters, while increased with the escalation in Reynolds number. Also, the Bejan number is increased with the escalation in porosity and magnetic parameter, while increased with the escalation in thermal radiation parameter. The impact of skin fraction coefficient and local Nusselt number are discussed through tables. The partial differential equations are converted to ordinary differential equation with the help of similarity variables. The homotopy analysis method (HAM) is used for the solution of the problem. The results of this investigation agree, satisfactorily, with past studies.


Author(s):  
Hunegnaw Dessie ◽  
Naikoti Kishan

In this paper, unsteady MHD flow of heat and mass transfer of Cu-water and TiO2-water nanofluids over stretching sheet with a non-uniform heat/source/sink considering viscous dissipation and chemical reaction is investigated. The governing partial differential equations with the corresponding boundary conditions are transformed to a system of non-linear ordinary differential equations and solved using Keller box method. The velocity, temperature and concentration profiles are obtained and the influences of various relevant parameters, namely the magnetic parameter M, Prandtl number Pr, Eckert number Ec, Schmidt number Le , chemical reaction parameter K,unsteadiness parameter S and the Soret number Sr on velocity, temperature and concentration profiles are discussed. The skin-friction coefficient–f''(0), heat transfer coefficient –θ'(0) and mass transfer coefficient –φ'(0) are presented in tables. A comparison with published results is also presented and found in good agreement. Keywords: MHD; Keller box method; unsteady; nanofluid; non-uniform heat/source/sink; chemical reaction; viscous dissipation.


2018 ◽  
Vol 22 (1 Part B) ◽  
pp. 495-506 ◽  
Author(s):  
Oluwole Makinde ◽  
Fazle Mabood ◽  
Mohammed Ibrahim

In this paper, steady 2-D MHD free convective boundary-layer flows of an electrically conducting nanofluid over a non-linear stretching sheet taking into account the chemical reaction and heat source/sink are investigated. The governing equations are transformed into a system of non-linear ODE using suitable similarity transformations. Analytical solution for the dimensionless velocity, temperature, concentration, skin friction coefficient, heat and mass transfer rates are obtained by using homotopy analysis method. The obtained results show that the flow field is substantially influenced by the presence of chemical reaction, radiation, and magnetic field.


Sign in / Sign up

Export Citation Format

Share Document