scholarly journals Novel Advances to Post-Stroke Aphasia Pharmacology and Rehabilitation

2021 ◽  
Vol 10 (17) ◽  
pp. 3778
Author(s):  
Natalia Cichon ◽  
Lidia Wlodarczyk ◽  
Joanna Saluk-Bijak ◽  
Michal Bijak ◽  
Justyna Redlicka ◽  
...  

Aphasia is one of the most common clinical features of functional impairment after a stroke. Approximately 21–40% of stroke patients sustain permanent aphasia, which progressively worsens one’s quality of life and rehabilitation outcomes. Post-stroke aphasia treatment strategies include speech language therapies, cognitive neurorehabilitation, telerehabilitation, computer-based management, experimental pharmacotherapy, and physical medicine. This review focuses on current evidence of the effectiveness of impairment-based aphasia therapies and communication-based therapies (as well as the timing and optimal treatment intensities for these interventions). Moreover, we present specific interventions, such as constraint-induced aphasia therapy (CIAT) and melodic intonation therapy (MIT). Accumulated data suggest that using transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) is safe and can be used to modulate cortical excitability. Therefore, we review clinical studies that present TMS and tDCS as (possible) promising therapies in speech and language recovery, stimulating neuroplasticity. Several drugs have been used in aphasia pharmacotherapy, but evidence from clinical studies suggest that only nootropic agents, donepezil and memantine, may improve the prognosis of aphasia. This article is an overview on the current state of knowledge related to post-stroke aphasia pharmacology, rehabilitation, and future trends.

2021 ◽  
Vol 12 ◽  
Author(s):  
Ana Haro-Martínez ◽  
Carmen M. Pérez-Araujo ◽  
Juan M. Sanchez-Caro ◽  
Blanca Fuentes ◽  
Exuperio Díez-Tejedor

Introduction: Melodic intonation therapy (MIT) is one of the most studied speech and language therapy (SLT) approaches for patients with non-fluent aphasia, although the methodological quality of the studies has been rated as low in previous reviews. The aim of this study is to update current evidence on the possible efficacy of MIT for the treatment of non-fluent post-stroke aphasia.Methods: A systematic review and meta-analysis. We selected randomized clinical trials (RCT) that included adult patients over 18 years of age with non-fluent post-stroke aphasia, whose intervention was MIT vs. no therapy or other therapy. We excluded non-RCT studies, mixed populations including patients with aphasia of non-stroke etiology, studies with no availability of post-stroke aphasia-specific data, and incomplete studies. Three sections of communicative ability were analyzed as outcomes: functional communication, expressive language (naming and repetition), and comprehension.Results: We identified a total of four eligible RCTs involving 94 patients. Despite the heterogeneity in the psychometric tests employed among the trials, a significant effect of MIT on functional communication (evaluated by the Communication Activity Log) was found (SMD 1.47; 95% CI 0.39–2.56). In addition, a positive effect of MIT on expressive language (repetition) was found (SMD 0.45; 95% CI 0.01–0.90). No significant effects on comprehension measurements were found, despite a lack of significant statistical heterogeneity.Conclusion: This systematic review and meta-analysis shows a significant effect of MIT on improving functional communication and on repetition tasks. Future larger RCT specifically addressing those outcomes should provide the definite evidence on the efficacy of MIT on post-stroke aphasia recovery.Systematic Review Registration:PROSPERO-URL https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020144604.


Author(s):  
Heidi Nedergård ◽  
Ashokan Arumugam ◽  
Marlene Sandlund ◽  
Anna Bråndal ◽  
Charlotte K. Häger

Abstract Background Robotic-Assisted Gait Training (RAGT) may enable high-intensive and task-specific gait training post-stroke. The effect of RAGT on gait movement patterns has however not been comprehensively reviewed. The purpose of this review was to summarize the evidence for potentially superior effects of RAGT on biomechanical measures of gait post-stroke when compared with non-robotic gait training alone. Methods Nine databases were searched using database-specific search terms from their inception until January 2021. We included randomized controlled trials investigating the effects of RAGT (e.g., using exoskeletons or end-effectors) on spatiotemporal, kinematic and kinetic parameters among adults suffering from any stage of stroke. Screening, data extraction and judgement of risk of bias (using the Cochrane Risk of bias 2 tool) were performed by 2–3 independent reviewers. The Grading of Recommendations Assessment Development and Evaluation (GRADE) criteria were used to evaluate the certainty of evidence for the biomechanical gait measures of interest. Results Thirteen studies including a total of 412 individuals (mean age: 52–69 years; 264 males) met eligibility criteria and were included. RAGT was employed either as monotherapy or in combination with other therapies in a subacute or chronic phase post-stroke. The included studies showed a high risk of bias (n = 6), some concerns (n = 6) or a low risk of bias (n = 1). Meta-analyses using a random-effects model for gait speed, cadence, step length (non-affected side) and spatial asymmetry revealed no significant differences between the RAGT and comparator groups, while stride length (mean difference [MD] 2.86 cm), step length (affected side; MD 2.67 cm) and temporal asymmetry calculated in ratio-values (MD 0.09) improved slightly more in the RAGT groups. There were serious weaknesses with almost all GRADE domains (risk of bias, consistency, directness, or precision of the findings) for the included outcome measures (spatiotemporal and kinematic gait parameters). Kinetic parameters were not reported at all. Conclusion There were few relevant studies and the review synthesis revealed a very low certainty in current evidence for employing RAGT to improve gait biomechanics post-stroke. Further high-quality, robust clinical trials on RAGT that complement clinical data with biomechanical data are thus warranted to disentangle the potential effects of such interventions on gait biomechanics post-stroke.


2021 ◽  
pp. 251660852098429
Author(s):  
Dorcas B. C. Gandhi ◽  
Ivy Anne Sebastian ◽  
Komal Bhanot

Sensory dysfunction is one of the common impairments that occurs post stroke. With sensory changes in all modalities, it also affects the quality of life and incites suicidal thoughts. The article attempts to review and describe the current evidence of various approaches of assessment and rehabilitation for post-stroke sensory dysfunction. After extensive electronic database search across Medline, Embase, EBSCO, and Cochrane library, it generated 2433 results. After screening according to inclusion and exclusion criteria, we included 11 studies. We categorized data based on type of sensory deficits and prevalence, role of sensory system on motor behavior, type of intervention, sensory modality targeted, and dosage of intervention and outcome measures used for rehabilitation. Results found the strong evidence of involvement of primary and secondary motor areas involved in processing and responding to somatosensation, respectively. We divided rehabilitation approaches into sensory stimulation approach and sensory retraining approach focused on using external stimuli and relearning, respectively. However, with varied aims and targeted sensory involvement, the study applicability is affected. Thus, this emerges the need of extensive research in future for evidence-based practice of assessments and rehabilitation on post-stroke sensory rehabilitation.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1371
Author(s):  
Justin Kwan ◽  
Uei Pua

The liver is frequently the most common site of metastasis in patients with colorectal cancer, occurring in more than 50% of patients. While surgical resection remains the only potential curative option, it is only eligible in 15–20% of patients at presentation. In the past two decades, major advances in modern chemotherapy and personalized biological agents have improved overall survival in patients with unresectable liver metastasis. For patients with dominant liver metastatic disease or limited extrahepatic disease, liver-directed intra-arterial therapies such as hepatic arterial chemotherapy infusion, chemoembolization and radioembolization are treatment strategies which are increasingly being considered to improve local tumor response and to reduce systemic side effects. Currently, these therapies are mostly used in the salvage setting in patients with chemo-refractory disease. However, their use in the first-line setting in conjunction with systemic chemotherapy as well as to a lesser degree, in a neoadjuvant setting, for downstaging to resection have also been investigated. Furthermore, some clinicians have considered these therapies as a temporizing tool for local disease control in patients undergoing a chemotherapy ‘holiday’ or acting as a bridge in patients between different lines of systemic treatment. This review aims to provide an update on the current evidence regarding liver-directed intra-arterial treatment strategies and to discuss potential trends for the future.


2021 ◽  
Author(s):  
Julio C Furlan ◽  
Jefferson R Wilson ◽  
Eric M Massicotte ◽  
Arjun Sahgal ◽  
Fehlings G Michael

Abstract The field of spinal oncology has substantially evolved over the past decades. This review synthesizes and appraises what was learned and what will potentially be discovered from the recently completed and ongoing clinical studies related to the treatment of primary and secondary spinal neoplasms. This scoping review included all clinical studies on the treatment of spinal neoplasms registered in the ClinicalTrials.gov website from February/2000 to December/2020. The terms “spinal cord tumor”, “spinal metastasis”, and “metastatic spinal cord compression” were used. Of the 174 registered clinical studies on primary spinal tumors and spinal metastasis, most of the clinical studies registered in this American registry were interventional studies led by single institutions in North America (n=101), Europe (n=43), Asia (n=24) or other continents (n=6). The registered clinical studies mainly focused on treatment strategies for spinal neoplasms (90.2%) that included investigating stereotactic radiosurgery (n=33), radiotherapy (n=21), chemotherapy (n=20), and surgical technique (n=11). Of the 69 completed studies, the results from 44 studies were published in the literature. In conclusion, this review highlights the key features of the 174 clinical studies on spinal neoplasms that were registered from 2000 to 2020. Clinical trials were heavily skewed towards the metastatic population as opposed to the primary tumours which likely reflects the rarity of the latter condition and associated challenges in undertaking prospective clinical studies in this population. This review serves to emphasize the need for a focused approach to enhancing translational research in spinal neoplasms with a particular emphasis on primary tumors.


2019 ◽  
Author(s):  
Xin Li ◽  
Charalambos C. Charalambous ◽  
Darcy S. Reisman ◽  
Susanne M. Morton

AbstractBackgroundAcute exercise can increase motor cortical excitability and enhance motor learning in healthy individuals, an effect known as exercise priming. Whether it has the same effects in people with stroke is unclear.ObjectivesThe objective of this study was to investigate whether a short, clinically-feasible high-intensity exercise protocol can increase motor cortical excitability in non-exercised muscles of chronic stroke survivors.MethodsThirteen participants with chronic, unilateral stroke participated in two sessions, at least one week apart, in a crossover design. In each session, they underwent either high-intensity lower extremity exercise or quiet rest. Motor cortical excitability of the extensor carpi radialis muscles was measured bilaterally with transcranial magnetic stimulation before and immediately after either exercise or rest. Motor cortical excitability changes (post-exercise or rest measures normalized to pre-test measures) were compared between exercise vs. rest conditions.ResultsAll participants were able to reach the target high-intensity exercise level. Blood lactate levels increased significantly after exercise (p < 0.001, d = 2.85). Resting motor evoked potentials from the lesioned hemisphere increased after exercise compared to the rest condition (p = 0.046, d = 2.76), but this was not the case for the non-lesioned hemisphere (p = 0.406, d = 0.25).ConclusionsHigh-intensity exercise can increase lesioned hemisphere motor cortical excitability in a non-exercised muscle post-stroke. Our short and clinically-feasible exercise protocol shows promise as a potential priming method in stroke rehabilitation.


Sign in / Sign up

Export Citation Format

Share Document