scholarly journals Comparative Analysis of Stress and Deformation between One-Fenced and Three-Fenced Dental Implants Using Finite Element Analysis

2021 ◽  
Vol 10 (17) ◽  
pp. 3986
Author(s):  
Chia-Hsuan Lee ◽  
Arvind Mukundan ◽  
Szu-Chien Chang ◽  
Yin-Lai Wang ◽  
Shu-Hao Lu ◽  
...  

Finite element analysis (FEA) has always been an important tool in studying the influences of stress and deformation due to various loads on implants to the surrounding jaws. This study assessed the influence of two different types of dental implant model on stress dissipation in adjoining jaws and on the implant itself by utilizing FEA. This analysis aimed to examine the effects of increasing the number of fences along the implant and to compare the resulting stress distribution and deformation with surrounding bones. When a vertical force of 100 N was applied, the largest displacements found in the three-fenced and single-fenced models were 1.7469 and 2.5267, respectively, showing a drop of 30.8623%. The maximum stress found in the three-fenced and one-fenced models was 13.518 and 22.365 MPa, respectively, showing a drop of 39.557%. Moreover, when an oblique force at 35° was applied, a significant increase in deformation and stress was observed. However, the three-fenced model still had less stress and deformation compared with the single-fenced model. The FEA results suggested that as the number of fences increases, the stress dissipation increases, whereas deformation decreases considerably.

2013 ◽  
Vol 475-476 ◽  
pp. 1487-1493 ◽  
Author(s):  
Xiao Zhang ◽  
Zhan Gong Xie ◽  
Wei Feng ◽  
Xian Shuai Chen ◽  
Jian Yu Chen

Aiming to investigate the effects of custom-made and thread dental implant systems on the stress distribution in alveolar bone using linear analysis of the finite element method (FEM). Two types of systems: the custom-made implant and the thread dental implant system, were studied using a three-dimensional finite element analysis (3D FEA). Comparing the parts of all systems for loading in different directions, the stress and deformation distribution in custom-made implant and alveolar bone are better than that in thread dental implant system. The analysis data definitely demonstrated the difference in stress and deformation distribution of components in different dental implant systems. Results show the custom-made implants are provided with more advantages and can be used in future experiment and clinical test.


2021 ◽  
Vol 13 (2) ◽  
pp. 57-61
Author(s):  
Alireza Izadi ◽  
Fariboorz Vafaie ◽  
Armaghan Shahbazi ◽  
Mohamad Taghi Mokri vala

Background: This finite element analysis (FEA) evaluated stress distribution in implant-supported overdenture (ISO) and peri-implant bone using one extracoronal (ball) and two intracoronal (locator and Zest Anchor Advanced Generation (ZAAG)) attachment systems. Methods: In this in vitro study, the mandible was modelled in the form of an arc-shaped bone block with 33 mm height and 8 mm width. Two titanium implants were modelled at the site of canine teeth, and three attachments (ZAGG, locator, and ball) were placed over them. Next, 100 N load was applied at 90° and 30° angles from the molar site of each quadrant to the implants. The stress distribution pattern in the implants and the surrounding bone was analyzed, and the von Mises stress around the implants and in the crestal bone was calculated. Results: While minimum stress in peri-implant bone following load application at 30° angle was noted in the mesial point of the locator attachment, maximum stress was recorded at the distal point of the ball attachment following load application at 90° angle. Maximum stress around the implant following load application at 90° angle was noted in the lingual point of the ball attachment while minimum stress was recorded in the lingual point of the locator attachment following load application at 90° angle. Conclusions: According to the results, the locator attachment is preferred to the ZAAG attachment, and the ball attachment should be avoided if possible.


Author(s):  
Vinod Bandela ◽  
Ram Basany ◽  
Anil Kumar Nagarajappa ◽  
Sakeenabi Basha ◽  
Saraswathi Kanaparthi ◽  
...  

Purpose: To analyze the stress distribution and the direction of force in external hexagonal implant with crown in three different angulations. Materials and Methods: A total of 60 samples of geometric models were used to analyze von Mises stress and direction of force with 0-, 5-, and 10-degree lingual tilt. Von Mises stress and force distribution were evaluated at nodes of hard bone, and finite element analysis was performed using ANSYS 12.1 software. For calculating stress distribution and force, we categorized and labeled the groups as Implant A1, Implant A2, and Implant A3, and Implant B1, Implant B2, and Implant B3 with 0-, 5-, and 10-degree lingual inclinations, respectively. Inter- and intra-group comparisons were performed using ANOVA test. A p-value of ≤0.05 was considered statistically significant. Results: In all the three models, overall maximum stress was found in implant model A3 on the implant surface (86.61), and minimum was found on model A1 in hard bone (26.21). In all the three models, the direction of force along three planes was maximum in DX (0.01025) and minimum along DZ (0.002) direction with model B1. Conclusion: Maximum von Mises stress and the direction of force in axial direction was found at the maximum with the implant of 10 degrees angulation. Thus, it was evident that tilting of an implant influences the stress concentration and force in external hex implants.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Piotr Prochor ◽  
Eugeniusz Sajewicz

The aim of the research was to determine the optimal thread’s shape to be used in implants for direct skeletal attachment of limb prosthesis. In addition, by testing appropriate parameters’ modification of the suitable thread, an attempt was made to maximise its effectiveness. The analyses included three thread types described in the ISO standards: shallow, symmetrical, and asymmetrical. The obtained results suggest that shallow thread ensures the lowest equivalent and directional stress peaks generated in the bone as well as favourable stress patterns and profiles during implant loading in relation to symmetrical and asymmetrical threads. Moreover, shallow thread ensured the generation of single equivalent and directional stress peaks, while symmetrical and asymmetrical threads provided additional stress peak for equivalent as well as for each of directional peaks. Subsequently, optimisation of the shallow thread’s shape was conducted by changing two relevant thread’s parameters (flank angle and rounding arc) which influence the generated stress distribution. The highest reduction of stress peaks was obtained while reducing the rounding arc by 0.2 mm. Therefore, it can be stated that the proposed modification of the HA thread can lead to obtaining a higher biomechanical effectiveness of implants for direct skeletal attachment of limb prosthesis.


2015 ◽  
Vol 41 (6) ◽  
pp. 646-651 ◽  
Author(s):  
Hakimeh Siadat ◽  
Shervin Hashemzadeh ◽  
Allahyar Geramy ◽  
Seyed Hossein Bassir ◽  
Marzieh Alikhasi

There are some anatomical restrictions in which implants are not possible to be inserted in their conventional configuration. Offset placement of implants in relation to the prosthetic unit could be a treatment solution. The aim of this study was to evaluate the effect of the offset placement of implant-supported prosthesis on the stress distribution around a dental implant using 3D finite element analysis. 3D finite element models of implant placement in the position of a mandibular molar with 4 configurations (0, 0.5, 1, 1.5 mm offset) were created in order to investigate resultant stress/strain distribution. A vertical load of 100 N was applied on the center of the crown of the models. The least stress in peri-implant tissue was found in in-line configuration (0 mm offset). Stress concentration in the peri-implant tissue increased by increasing the amount of offset placement. Maximum stress concentration in all models was detected at the neck of the implant. It can be concluded that the offset placement of a single dental implant does not offer biomechanical advantages regarding reducing stress concentration over the in-line implant configuration. It is suggested that the amount of offset should be as minimum as possible.


2016 ◽  
Vol 138 (3) ◽  
Author(s):  
Joo-Sun Hwang ◽  
Seung-Ho Seo ◽  
Won-Jun Lee

We examined the effect of the design parameters of a through-silicon via (TSV) on the thermomechanical stress distribution at the bottom of the TSV using finite element analysis. Static analyses were carried out at 350 °C to simulate the maximum thermomechanical stress during postplating annealing. The thermomechanical stress is concentrated in the lower region of a TSV, and the maximum stress in silicon occurs at the bottom of the TSV. The TSV diameter and dielectric liner thickness were two important determinants of the maximum stress in the silicon. The maximum stress decreased with decreasing TSV diameter, whereas the effect of aspect ratio was negligible. A thick dielectric liner is advantageous for lowering the maximum stress in silicon. The minimum dielectric thickness resulting in a maximum stress less than the yield stress of silicon was 520, 230, and 110 nm for via diameters of 20, 10, and 5 μm, respectively. The maximum stress also decreased with the thickness of the copper overburden.


Sign in / Sign up

Export Citation Format

Share Document