scholarly journals Higher-Order Language Dysfunctions in Individuals with Alcohol Use Disorder

2021 ◽  
Vol 10 (18) ◽  
pp. 4199
Author(s):  
Ewa Karabanowicz ◽  
Ernest Tyburski ◽  
Karol Karasiewicz ◽  
Adrianna Bober ◽  
Leszek Sagan ◽  
...  

Patients with alcohol use disorders (AUD) have difficulties with certain aspects of higher-order language functions (HOLF) but there is no data on a wide range of these functions in this group. Therefore, the aim of this study was to compare different aspects of HOLF in patients with AUD and healthy controls (HC). A total of 31 patients with AUD and 44 HC took part in the study. We assessed HOLF with the Right Hemisphere Language Battery (RHLB) and measured control variables: depression using the Patient Health Questionnaire (PHQ) as well as the speed of processing and executive functions with the Color Trails Test (CTT). Patients with AUD had lower results on nine RHLB tests. Moreover, AUD patients had higher scores on PHQ and longer reaction times on CTT. The differences in most RHLB results remained significant after co-varying the control variables. Patients with AUD have difficulties with making inferences from the text, understanding the meaning of individual words, metaphorical content, and prosody, which may impede the comprehension and production of discourse in which linguistic elements must be integrated with non-verbal cues and contextual information. These disturbances may impact various spheres of everyday life and negatively influence social, private, and professional functioning.

BMC Neurology ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ya-Chi Chuang ◽  
Chuan-Ching Liu ◽  
I-Ching Yu ◽  
Yu-Lin Tsai ◽  
Shin-Tsu Chang

Abstract Background Global aphasia without hemiparesis (GAWH) is a rare stroke syndrome characterized by the dissociation of motor and language functions. Here, we present a case of GAWH with the patient later regaining speech fluency. Case presentation A 73-year-old man was admitted to our emergency department immediately after an episode of syncope. On arrival, we noted his global aphasia but without any focal neurologic signs. Computed tomography (CT) perfusion scans showed a large hypodense region over his left perisylvian area. Under the impression of acute ischaemic stroke, he received recombinant tissue plasminogen activator (rtPA) injection and was treated as an inpatient. The patient was later discharged with GAWH status and received regular speech rehabilitation. After 14 months of rehabilitation, the patient gradually recovered his language expression ability. The degree of aphasia was evaluated with the Concise Chinese Aphasia Test (CCAT), and we obtained brain single photon emission computed tomography (SPECT) scans to assess cerebral blood flow. Conclusion A patient with severe impairments of Broca’s and Wernicke’s areas was able to talk fluently despite being unintelligible. SPECT revealed relative high level of radioactivity uptake in the right frontal lobe, suggesting the deficits in speech fluency could have been compensated by the right hemisphere. Although this is a single case demonstration, the results may strengthen the role of the right hemisphere in GAWH patients and suggests additional study that examines the possible benefits of stimulating activity at right homologous regions for recovering language function after global aphasia.


Author(s):  
Norman D. Cook

Speech production in most people is strongly lateralized to the left hemisphere (LH), but language understanding is generally a bilateral activity. At every level of linguistic processing that has been investigated experimentally, the right hemisphere (RH) has been found to make characteristic contributions, from the processing of the affective aspects of intonation, through the appreciation of word connotations, the decoding of the meaning of metaphors and figures of speech, to the understanding of the overall coherency of verbal humour, paragraphs and short stories. If both hemispheres are indeed engaged in linguistic decoding and both processes are required to achieve a normal level of understanding, a central question concerns how the separate language functions on the left and right are integrated. This chapter reviews relevant studies on the hemispheric contributions to language processing and the role of interhemispheric communications in cognition.


1988 ◽  
Vol 66 (3) ◽  
pp. 803-810 ◽  
Author(s):  
Michael P. Rastatter ◽  
Catherine Loren

The current study investigated the capacity of the right hemisphere to process verbs using a paradigm proven reliable for predicting differential, minor hemisphere lexical analysis in the normal, intact brain. Vocal reaction times of normal subjects were measured to unilaterally presented verbs of high and of low frequency. A significant interaction was noted between the stimulus items and visual fields. Post hoc tests showed that vocal reaction times to verbs of high frequency were significantly faster following right visual-field presentations (right hemisphere). No significant differences in vocal reaction time occurred between the two visual fields for the verbs of low frequency. Also, significant differences were observed between the two types of verbs following left visual-field presentation but not the right. These results were interpreted to suggest that right-hemispheric analysis was restricted to the verbs of high frequency in the presence of a dominant left hemisphere.


1994 ◽  
Vol 78 (3) ◽  
pp. 971-978 ◽  
Author(s):  
Robert Geheb ◽  
Keith E. Whitfield ◽  
Linda Brannon

The present study of gender differences in hemispheric processing involved identification of tachistoscopically presented images of varying complexity. A computerized tachistoscopic program was administered to 24 men and 34 women. Time to identify contour and detailed pictures presented to the left or right cerebral hemisphere was recorded. Mean reaction time for contour pictures was significantly faster than for detailed pictures, and mean reaction time to the right hemisphere was significantly faster than that to the left hemisphere. The mean reaction time for men to identify pictures exposed to the left hemisphere was significantly slower than that for exposure to the right hemisphere for women. The mean reaction time for both men and women to identify contour pictures exposed to the right hemisphere was significantly faster than the mean time to identify detailed pictures presented to the left hemisphere. The interaction of gender, hemisphere, and complexity was also significant in that mean reaction times for men to identify detailed pictures presented to the left hemisphere were slower than the times for women to identify contour pictures presented to the right hemisphere. The results are discussed in relation to theories about hemispheres, gender, and differences in picture features.


1983 ◽  
Vol 57 (3) ◽  
pp. 923-929 ◽  
Author(s):  
John L. Andreassi ◽  
Charles S. Rebert ◽  
Ferol F. Larsen

Reaction time and signal detection performance were measured during a 78-min. vigilance task. 12 right-handed male subjects served in two experimental sessions. Subjects focused on a central fixation point and responded to signals presented at unpredictable times in one of three locations: 2.5° to right of central fixation, central, and 2.5° to the left of center. Subjects decided whether to press a response key with either the left or right hand with each presentation. Over-all vigilance performance (signal detections and response time) was similar for left and right visual-field presentations. Evidence from reaction times indicated that responses controlled by the left hemisphere were faster to a verbal stimulus (T) while reactions controlled by the right hemisphere were faster to an apparent non-verbal stimulus, an inverted T.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Sladjana Lukic ◽  
Elena Barbieri ◽  
Xue Wang ◽  
David Caplan ◽  
Swathi Kiran ◽  
...  

The role of the right hemisphere (RH) in recovery from aphasia is incompletely understood. The present study quantified RH grey matter (GM) volume in individuals with chronic stroke-induced aphasia and cognitively healthy people using voxel-based morphometry. We compared group differences in GM volume in the entire RH and in RH regions-of-interest. Given that lesion site is a critical source of heterogeneity associated with poststroke language ability, we used voxel-based lesion symptom mapping (VLSM) to examine the relation between lesion site and language performance in the aphasic participants. Finally, using results derived from the VLSM as a covariate, we evaluated the relation between GM volume in the RH and language ability across domains, including comprehension and production processes both at the word and sentence levels and across spoken and written modalities. Between-subject comparisons showed that GM volume in the RH SMA was reduced in the aphasic group compared to the healthy controls. We also found that, for the aphasic group, increased RH volume in the MTG and the SMA was associated with better language comprehension and production scores, respectively. These data suggest that the RH may support functions previously performed by LH regions and have important implications for understanding poststroke reorganization.


2005 ◽  
Vol 102 (1) ◽  
pp. 169-173 ◽  
Author(s):  
Kuan H. Kho ◽  
Frans S. S. Leijten ◽  
Geert-Jan Rutten ◽  
Jan Vermeulen ◽  
Peter van Rijen ◽  
...  

✓ The Wada test is still considered the gold standard for determining the language-dominant hemisphere prior to brain surgery. The authors report on a 34-year-old right-handed woman whose Wada test results indicated that the right hemisphere was dominant for language. In contrast, functional magnetic resonance (fMR) imaging was indicative of bilaterally represented language functions. Activation in the left hemisphere demonstrated on fMR imaging was most pronounced in the Broca area. Importantly, fMR imaging results in this area were confirmed on electrocortical stimulation mapping. These contradictory findings indicated that a right hemispherre dominance for language according to the Wada test should be questioned and verified using electrocortical stimulation. Nonetheless, the question remains whether involvement of these areas in the left frontal hemisphere is critical for language, as these were spared during surgery.


1998 ◽  
Vol 172 (2) ◽  
pp. 142-146 ◽  
Author(s):  
Matthias Weisbrod ◽  
Sabine Maier ◽  
Sabine Harig ◽  
Ulrike Himmelsbach ◽  
Manfred Spitzer

BackgroundIn schizophrenia, disturbances in the development of physiological hemisphere asymmetry are assumed to play a pathogenetic role. The most striking difference between hemispheres is in language processing. The left hemisphere is superior in the use of syntactic or semantic information, whereas the right hemisphere uses contextual information more effectively.MethodUsing psycholinguistic experimental techniques, semantic associations were examined in 38 control subjects, 24 non-thought-disordered and 16 thought-disordered people with schizophrenia, for both hemispheres separately.ResultsDirect semantic priming did not differ between the hemispheres in any of the groups. Only thought-disordered people showed significant indirect semantic priming in the left hemisphere.ConclusionsThe results support: (a) a prominent role of the right hemisphere for remote associations; (b) enhanced spreading of semantic associations in thought-disordered subjects; and (c) disorganisation of the functional asymmetry of semantic processing in thought-disordered subjects.


2021 ◽  
Author(s):  
Kaoru Amemiya ◽  
Eiichi Naito ◽  
Hiromasa Takemura

AbstractThe superior longitudinal fascicle/fasciculus (SLF) is a major white matter tract connecting the frontal and parietal cortices in humans. Although the SLF has often been analyzed as a single entity, several studies have reported that the SLF is segregated into three distinct branches (SLF I, II, and III). They have also reported the right lateralization of the SLF III volume and discussed its relationship with lateralized cortical functions in the fronto-parietal network. However, to date, the homogeneity or heterogeneity of the age dependency and lateralization properties of SLF branches have not been fully clarified. Through this study, we aimed to clarify the age dependency and lateralization of SLF I-III by analyzing diffusion-weighted MRI (dMRI) and quantitative R1 (qR1) map datasets collected from a wide range of age groups, mostly comprising right-handed children, adolescents, adults, and seniors (6 to 81 years old). The age dependency in dMRI measurement (fractional anisotropy, FA) was heterogeneous among the three SLF branches, suggesting that these branches are regulated by distinct developmental and aging processes. Lateralization analysis on SLF branches revealed that the right SLF III was larger than the left SLF III in adults, replicating previous reports. FA measurement also suggested that, in addition to SLF III, SLF II was lateralized to the right hemisphere in adolescents and adults. We further found a left lateralization of SLF I in qR1 data, a microstructural measurement sensitive to myelin levels, in adults. These findings suggest that the SLF sub-bundles are distinct entities in terms of age dependency and lateralization.


Author(s):  
Lise Van der Haegen ◽  
Qing Cai

It is intriguing that the two brain halves of the human brain look so similar, but are in fact quite different at the anatomical level, and even more so at the functional level. In particular, the highly frequent co-occurrence of right-handedness and left hemisphere dominance of language has led to an abundance of laterality research. This chapter discusses the most important recent finding on laterality (i.e., left or right hemisphere) and degree of hemispheric specialization for speech production, auditory speech processing, and reading. Following a descriptive overview of these three core sub-processes of language, the chapter summarizes possible influences on the lateralization of each, including anatomical, evolutionary, genetic, developmental, and experiential factors, as well as handedness and impairment. It will become clear that language is a heterogeneous cognitive function driven by a variety of underpinning origins. Next, the often-underestimated role of the right hemisphere for language is discussed with respect to prosody and metaphor comprehension, as well as individual differences in the lateralization of healthy and language-impaired brains. Finally, recent insights into the relationship between lateralized language and non-language functions are discussed, highlighting the unique contribution of lateralization research to the growing knowledge of general human brain mechanisms.


Sign in / Sign up

Export Citation Format

Share Document