Lateralization of Language

Author(s):  
Lise Van der Haegen ◽  
Qing Cai

It is intriguing that the two brain halves of the human brain look so similar, but are in fact quite different at the anatomical level, and even more so at the functional level. In particular, the highly frequent co-occurrence of right-handedness and left hemisphere dominance of language has led to an abundance of laterality research. This chapter discusses the most important recent finding on laterality (i.e., left or right hemisphere) and degree of hemispheric specialization for speech production, auditory speech processing, and reading. Following a descriptive overview of these three core sub-processes of language, the chapter summarizes possible influences on the lateralization of each, including anatomical, evolutionary, genetic, developmental, and experiential factors, as well as handedness and impairment. It will become clear that language is a heterogeneous cognitive function driven by a variety of underpinning origins. Next, the often-underestimated role of the right hemisphere for language is discussed with respect to prosody and metaphor comprehension, as well as individual differences in the lateralization of healthy and language-impaired brains. Finally, recent insights into the relationship between lateralized language and non-language functions are discussed, highlighting the unique contribution of lateralization research to the growing knowledge of general human brain mechanisms.

2021 ◽  
Vol 11 (8) ◽  
pp. 960
Author(s):  
Mina Kheirkhah ◽  
Philipp Baumbach ◽  
Lutz Leistritz ◽  
Otto W. Witte ◽  
Martin Walter ◽  
...  

Studies investigating human brain response to emotional stimuli—particularly high-arousing versus neutral stimuli—have obtained inconsistent results. The present study was the first to combine magnetoencephalography (MEG) with the bootstrapping method to examine the whole brain and identify the cortical regions involved in this differential response. Seventeen healthy participants (11 females, aged 19 to 33 years; mean age, 26.9 years) were presented with high-arousing emotional (pleasant and unpleasant) and neutral pictures, and their brain responses were measured using MEG. When random resampling bootstrapping was performed for each participant, the greatest differences between high-arousing emotional and neutral stimuli during M300 (270–320 ms) were found to occur in the right temporo-parietal region. This finding was observed in response to both pleasant and unpleasant stimuli. The results, which may be more robust than previous studies because of bootstrapping and examination of the whole brain, reinforce the essential role of the right hemisphere in emotion processing.


Open Medicine ◽  
2012 ◽  
Vol 7 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Zlatislav Stoyanov ◽  
Lyoubka Decheva ◽  
Irina Pashalieva ◽  
Piareta Nikolova

AbstractThe principle of symmetry-asymmetry is widely presented in the structural and functional organization of the nonliving and living nature. One of the most complex manifestations of this principle is the left-right asymmetry of the human brain. The present review summarizes previous and contemporary literary data regarding the role of brain asymmetry in neuroimmunomodulation. Some handedness-related peculiarities are outlined additionally. Brain asymmetry is considered to be imprinted in the formation and regulation of the individual’s responses and relationships at an immunological level with the external and internal environment. The assumptions that the hemispheres modulate immune response in an asymmetric manner have been confirmed in experiments on animals. Some authors assume that the right hemisphere plays an indirect role in neuroimmunomodulation, controlling and suppressing the left hemispheric inductive signals.


Author(s):  
Norman D. Cook

Speech production in most people is strongly lateralized to the left hemisphere (LH), but language understanding is generally a bilateral activity. At every level of linguistic processing that has been investigated experimentally, the right hemisphere (RH) has been found to make characteristic contributions, from the processing of the affective aspects of intonation, through the appreciation of word connotations, the decoding of the meaning of metaphors and figures of speech, to the understanding of the overall coherency of verbal humour, paragraphs and short stories. If both hemispheres are indeed engaged in linguistic decoding and both processes are required to achieve a normal level of understanding, a central question concerns how the separate language functions on the left and right are integrated. This chapter reviews relevant studies on the hemispheric contributions to language processing and the role of interhemispheric communications in cognition.


1982 ◽  
Vol 54 (2) ◽  
pp. 655-660 ◽  
Author(s):  
Daniela Brizzolara ◽  
Gianni L. De Nobili ◽  
Giovanni Ferretti

The role of the right hemisphere in a task of haptic discrimination of line orientation was studied in 16 children aged 7–6 and 16 adults aged 25 yr. The exploratory movements were limited to hand and wrist, since it has been shown that distal movements are mediated by the contralateral hemisphere. A comparison of the performance of the two hands shows a clear superiority of the left hand and inferred right hemisphere in both children and adults. An especial emphasis in the discussion is given to the role of the experimental procedure in enhancing the effect of the hemispheric functional asymmetries.


2009 ◽  
Vol 2 (1) ◽  
Author(s):  
Rochele Paz Fonseca ◽  
Lilian Cristine Scherer ◽  
Camila Rosa de Oliveira ◽  
Maria Alice de Mattos Pimenta Parente

Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1602
Author(s):  
Christian Mancini ◽  
Giovanni Mirabella

The relationship between handedness, laterality, and inhibitory control is a valuable benchmark for testing the hypothesis of the right-hemispheric specialization of inhibition. According to this theory, and given that to stop a limb movement, it is sufficient to alter the activity of the contralateral hemisphere, then suppressing a left arm movement should be faster than suppressing a right-arm movement. This is because, in the latter case, inhibitory commands produced in the right hemisphere should be sent to the other hemisphere. Further, as lateralization of cognitive functions in left-handers is less pronounced than in right-handers, in the former, the inhibitory control should rely on both hemispheres. We tested these predictions on a medium-large sample of left- and right-handers (n = 52). Each participant completed two sessions of the reaching versions of the stop-signal task, one using the right arm and one using the left arm. We found that reactive and proactive inhibition do not differ according to handedness. However, we found a significant advantage of the right versus the left arm in canceling movements outright. By contrast, there were no differences in proactive inhibition. As we also found that participants performed movements faster with the right than with the left arm, we interpret our results in light of the dominant role of the left hemisphere in some aspects of motor control.


2020 ◽  
Vol 33 (4-5) ◽  
pp. 549-567 ◽  
Author(s):  
Andrea Ciricugno ◽  
Luca Rinaldi ◽  
Tomaso Vecchi ◽  
Lotfi B. Merabet ◽  
Zaira Cattaneo

Abstract Prior studies have shown that strabismic amblyopes do not exhibit pseudoneglect in visual line bisection, suggesting that the right-hemisphere dominance in the control of spatial attention may depend on a normally developing binocular vision. In this study, we aimed to investigate whether an abnormal binocular childhood experience also affects spatial attention in the haptic modality, thus reflecting a supramodal effect. To this aim, we compared the performance of normally sighted, strabismic and early monocular blind participants in a visual and a haptic line bisection task. In visual line bisection, strabismic individuals tended to err to the right of the veridical midpoint, in contrast with normally sighted participants who showed pseudoneglect. Monocular blind participants exhibited high variability in their visual performance, with a tendency to bisect toward the direction of the functioning eye. In turn, in haptic bisection, all participants consistently erred towards the left of the veridical midpoint. Taken together, our findings support the view that pseudoneglect in the visual and haptic modality relies on different functional and neural mechanisms.


2009 ◽  
Vol 2 (1) ◽  
pp. 25-33 ◽  
Author(s):  
Rochele Paz Fonseca ◽  
Lilian Cristine Scherer ◽  
Camila Rosa de Oliveira ◽  
Maria Alice de Mattos Pimenta Parente

2018 ◽  
Vol 25 (3) ◽  
pp. 258-270 ◽  
Author(s):  
Guido Gainotti

Models advanced to explain hemispheric asymmetries in representation of emotions will be discussed following their historical progression. First, the clinical observations that have suggested a general dominance of the right hemisphere for all kinds of emotions will be reviewed. Then the experimental investigations that have led to proposal of a different hemispheric specialization for positive versus negative emotions (valence hypothesis) or, alternatively, for approach versus avoidance tendencies (motivational hypothesis) will be surveyed. The discussion of these general models will be followed by a review of recent studies which have documented laterality effects within specific brain structures, known to play a critical role in different components of emotions, namely the amygdata in the computation of emotionally laden stimuli, the ventromedial prefrontal cortex in the integration between cognition and emotion and in the control of impulsive reactions and the anterior insula in the conscious experience of emotion. Results of these recent investigations support and provide an updated integrated version of early models assuming a general right hemisphere dominance for all kinds of emotions.


2002 ◽  
Vol 11 (3) ◽  
pp. 170-176 ◽  
Author(s):  
Jechil S. Sieratzki ◽  
Bencie Woll

SUMMARYObjective – To assess competing explanations for the universal preference of mothers to cradle infants on their left side and to propose a relation to hemispheric asymmetry for social attachment and communication behaviour. Methods – A review of observational, experimental, physiological, psychological, neuro-physiological, and neuro-psychological studies, including new findings on the cradling behaviour of mothers with auditory or visual impairments. Results – A significant left-cradling bias is observed in both right- and left-handed mothers which cannot adequately be explained by arguments based on handedness or closer contact to the soothing sound of the maternal heartbeat. Observations of primate behaviour have led to the suggestion that the left-cradling bias may be related to a left visual field (right hemisphere) advantage for monitoring an infant's facial expressions of distress. However, more than just monitoring, cradling subserves the mother's connection with the infant. For that reason, we have suggested that left cradling might be related to a right hemisphere specialisation for emotional communication, i.e. the speech melody, smiles, signals, and stroking which mothers use to interact with their infants. Studies of mother-infant interaction show that the sound of the mother's voice is more soothing when cradling on the left, more stimulating when cradling on the right. Cradling laterality may thus be related to emotional state and behavioural intent. There is also evidence to suggest that left cradling is linked to a special role of the right hemisphere in social attachment behaviour. This function may be disturbed in mothers with postnatal depression who show abnormal right hemisphere activity. Conclusion – Cradling embodies the symbiotic relationship between mother and infant; various lines of evidence support the suggestion that the universal preference of mothers to cradle infants on their left side is related to a right hemisphere dominance for social attachment and communication behaviour.


Sign in / Sign up

Export Citation Format

Share Document