scholarly journals Bicalutamide Exhibits Potential to Damage Kidney via Destroying Complex I and Affecting Mitochondrial Dynamics

2021 ◽  
Vol 11 (1) ◽  
pp. 135
Author(s):  
Kuan-Chou Chen ◽  
Chang-Rong Chen ◽  
Chang-Yu Chen ◽  
Chiung-Chi Peng ◽  
Robert Y. Peng

Bicalutamide (Bic) is an androgen deprivation therapy (ADT) for treating prostate cancer, while ADT is potentially associated with acute kidney injury. Previously, we recognized Bic induced renal mitochondria dysfunction in vitro and in vivo via the ROS -HIF1α pathway. Whether OXPHOS complex, as well as mitochondrial dynamics, can be influenced by Bic via modulation of peroxisome proliferator-activated receptor coactivator 1α (PGC1α), NADPH oxidase 4 (Nox4), mitofusins 1/2 (MFN 1/2), optic atrophy 1 (OPA1), and sirtuins (SIRTs) has not been documented. Renal mesangial cell line was treated with Bic (30~60 μM) for the indicated time. SIRTs, complex I, mitochondrial dynamics- and oxidative stress-related proteins were analyzed. Bic dose-dependently reduced mitochondrial potential, but dose- and time-dependently suppressed translocase of the outer mitochondrial membrane member 20 (Tomm 20), complex I activity. Nox4 and glutathione lead to decreased NAD+/NADH ratio, with upregulated superoxide dismutase 2. SIRT1 was initially stimulated and then suppressed, while SIRT3 was time- and dose-dependently downregulated. PGC1α, MFN2, and OPA1 were all upregulated, with MFN1 and pro-fission dynamin-related protein I downregulated. Bic exhibits potential to damage mitochondria via destroying complex I, complex I activity, and mitochondrial dynamics. Long-term treatment with Bic should be carefully followed up.

2019 ◽  
Vol 316 (2) ◽  
pp. E293-E304 ◽  
Author(s):  
Simon T. Bond ◽  
Sarah C. Moody ◽  
Yingying Liu ◽  
Mete Civelek ◽  
Claudio J. Villanueva ◽  
...  

Mitochondrial dynamics refers to the constant remodeling of mitochondrial populations by multiple cellular pathways that help maintain mitochondrial health and function. Disruptions in mitochondrial dynamics often lead to mitochondrial dysfunction, which is frequently associated with disease in rodents and humans. Consistent with this, obesity is associated with reduced mitochondrial function in white adipose tissue, partly via alterations in mitochondrial dynamics. Several proteins, including the E3 ubiquitin ligase membrane-associated RING-CH-type finger 5 (MARCH5), are known to regulate mitochondrial dynamics; however, the role of these proteins in adipocytes has been poorly studied. Here, we show that MARCH5 is regulated by peroxisome proliferator-activated receptor-γ (PPARγ) during adipogenesis and is correlated with fat mass across a panel of genetically diverse mouse strains, in ob/ob mice, and in humans. Furthermore, manipulation of MARCH5 expression in vitro and in vivo alters mitochondrial function, affects cellular metabolism, and leads to differential regulation of several metabolic genes. Thus our data demonstrate an association between mitochondrial dynamics and metabolism that defines MARCH5 as a critical link between these interconnected pathways.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
KyeongJin Kim ◽  
Jin Ku Kang ◽  
Young Hoon Jung ◽  
Sang Bae Lee ◽  
Raffaela Rametta ◽  
...  

AbstractIncreased adiposity confers risk for systemic insulin resistance and type 2 diabetes (T2D), but mechanisms underlying this pathogenic inter-organ crosstalk are incompletely understood. We find PHLPP2 (PH domain and leucine rich repeat protein phosphatase 2), recently identified as the Akt Ser473 phosphatase, to be increased in adipocytes from obese mice. To identify the functional consequence of increased adipocyte PHLPP2 in obese mice, we generated adipocyte-specific PHLPP2 knockout (A-PHLPP2) mice. A-PHLPP2 mice show normal adiposity and glucose metabolism when fed a normal chow diet, but reduced adiposity and improved whole-body glucose tolerance as compared to Cre- controls with high-fat diet (HFD) feeding. Notably, HFD-fed A-PHLPP2 mice show increased HSL phosphorylation, leading to increased lipolysis in vitro and in vivo. Mobilized adipocyte fatty acids are oxidized, leading to increased peroxisome proliferator-activated receptor alpha (PPARα)-dependent adiponectin secretion, which in turn increases hepatic fatty acid oxidation to ameliorate obesity-induced fatty liver. Consistently, adipose PHLPP2 expression is negatively correlated with serum adiponectin levels in obese humans. Overall, these data implicate an adipocyte PHLPP2-HSL-PPARα signaling axis to regulate systemic glucose and lipid homeostasis, and suggest that excess adipocyte PHLPP2 explains decreased adiponectin secretion and downstream metabolic consequence in obesity.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Wei Zhu ◽  
Hongyang Zhao ◽  
Fenfen Xu ◽  
Bin Huang ◽  
Xiaojing Dai ◽  
...  

Abstract Background Fenofibrate is a fibric acid derivative known to have a lipid-lowering effect. Although fenofibrate-induced peroxisome proliferator-activated receptor alpha (PPARα) transcription activation has been shown to play an important role in the malignant progression of gliomas, the underlying mechanisms are poorly understood. Methods In this study, we analyzed TCGA database and found that there was a significant negative correlation between the long noncoding RNA (lncRNA) HOTAIR and PPARα. Then, we explored the molecular mechanism by which lncRNA HOTAIR regulates PPARα in cell lines in vitro and in a nude mouse glioma model in vivo and explored the effect of the combined application of HOTAIR knockdown and fenofibrate treatment on glioma invasion. Results For the first time, it was shown that after knockdown of the expression of HOTAIR in gliomas, the expression of PPARα was significantly upregulated, and the invasion and proliferation ability of gliomas were obviously inhibited. Then, glioma cells were treated with both the PPARα agonist fenofibrate and si-HOTAIR, and the results showed that the proliferation and invasion of glioma cells were significantly inhibited. Conclusions Our results suggest that HOTAIR can negatively regulate the expression of PPARα and that the combination of fenofibrate and si-HOTAIR treatment can significantly inhibit the progression of gliomas. This introduces new ideas for the treatment of gliomas.


2021 ◽  
Vol 22 (9) ◽  
pp. 4670
Author(s):  
Cinzia Buccoliero ◽  
Manuela Dicarlo ◽  
Patrizia Pignataro ◽  
Francesco Gaccione ◽  
Silvia Colucci ◽  
...  

Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) is a protein that promotes transcription of numerous genes, particularly those responsible for the regulation of mitochondrial biogenesis. Evidence for a key role of PGC1α in bone metabolism is very recent. In vivo studies showed that PGC1α deletion negatively affects cortical thickness, trabecular organization and resistance to flexion, resulting in increased risk of fracture. Furthermore, in a mouse model of bone disease, PGC1α activation stimulates osteoblastic gene expression and inhibits atrogene transcription. PGC1α overexpression positively affects the activity of Sirtuin 3, a mitochondrial nicotinammide adenina dinucleotide (NAD)-dependent deacetylase, on osteoblastic differentiation. In vitro, PGC1α overexpression prevents the reduction of mitochondrial density, membrane potential and alkaline phosphatase activity caused by Sirtuin 3 knockdown in osteoblasts. Moreover, PGC1α influences the commitment of skeletal stem cells towards an osteogenic lineage, while negatively affects marrow adipose tissue accumulation. In this review, we will focus on recent findings about PGC1α action on bone metabolism, in vivo and in vitro, and in pathologies that cause bone loss, such as osteoporosis and type 2 diabetes.


2000 ◽  
Vol 164 (2) ◽  
pp. 1046-1054 ◽  
Author(s):  
Rolf Thieringer ◽  
Judy E. Fenyk-Melody ◽  
Cheryl B. Le Grand ◽  
Beverly A. Shelton ◽  
Patricia A. Detmers ◽  
...  

2003 ◽  
Vol 285 (6) ◽  
pp. H2298-H2308 ◽  
Author(s):  
Erin K. Ceaser ◽  
Anup Ramachandran ◽  
Anna-Liisa Levonen ◽  
Victor M. Darley-Usmar

Oxidized lipids are capable of initiating diverse cellular responses through both receptor-mediated mechanisms and direct posttranslational modification of proteins. Typically, exposure of cells to low concentrations of oxidized lipids induces cytoprotective pathways, whereas high concentrations result in apoptosis. Interestingly, mitochondria can contribute to processes that result in either cytoprotection or cell death. The role of antioxidant defenses such as glutathione in adaptation to stress has been established, but the potential interaction with mitochondrial function is unknown and is examined in this article. Human umbilical vein endothelial cells (HUVEC) were exposed to oxidized LDL (oxLDL) or the electrophilic cyclopentenone 15-deoxy-Δ12,14-PGJ2 (15d-PGJ2). We demonstrate that complex I activity, but not citrate synthase or cytochrome- c oxidase, is significantly induced by oxLDL and 15d-PGJ2. The mechanism is not clear at present but is independent of the induction of GSH, peroxisome proliferator-activated receptor (PPAR)-γ, and PPAR-α. This response is dependent on the induction of oxidative stress in the cells because it can be prevented by nitric oxide, probucol, and the SOD mimetic manganese(III) tetrakis(4-benzoic acid) porphyrin chloride. This increased complex I activity appears to contribute to protection against apoptosis induced by 4-hydroxynonenal.


Endocrinology ◽  
2009 ◽  
Vol 150 (9) ◽  
pp. 4074-4083 ◽  
Author(s):  
Ji-Won Kim ◽  
Young-Hye You ◽  
Dong-Sik Ham ◽  
Jae-Hyoung Cho ◽  
Seung-Hyun Ko ◽  
...  

Abstract Peroxisome proliferator-activated receptor γ-coactivator-1α (PGC-1α) is significantly elevated in the islets of animal models of diabetes. However, the molecular mechanism has not been clarified. We investigated whether the suppression of PGC-1α expression protects against β-cell dysfunction in vivo and determined the mechanism of action of PGC-1α in β-cells. The studies were performed in glucolipotixicity-induced primary rat islets and INS-1 cells. In vitro and in vivo approaches using adenoviruses were used to evaluate the role of PGC-1α in glucolipotoxicity-associated β-cell dysfunction. The expression of PGC-1α in cultured β-cells increased gradually with glucolipotoxicity. The overexpression of PGC-1α also suppressed the expression of the insulin and β-cell E-box transcription factor (BETA2/NeuroD) genes, which was reversed by PGC-1α small interfering RNA (siRNA). BETA2/NeuroD, p300-enhanced BETA2/NeuroD, and insulin transcriptional activities were significantly suppressed by Ad-PGC-1α but were rescued by Ad-siPGC-1α. PGC-1α binding at the glucocorticoid receptor site on the BETA2/NeuroD promoter increased in the presence of PGC-1α. Ad-siPGC-1α injection through the celiac arteries of 90% pancreatectomized diabetic rats improved their glucose tolerance and maintained their fasting insulin levels. The suppression of PGC-1α expression protects the glucolipotoxicity-induced β-cell dysfunction in vivo and in vitro. A better understanding of the functions of molecules such as PGC-1α, which play key roles in intracellular fuel regulation, could herald a new era of the treatment of patients with type 2 diabetes mellitus by providing protection from glucolipotoxicity, which is an important cause of the development and progression of the disease.


2019 ◽  
Vol 241 (3) ◽  
pp. 175-187 ◽  
Author(s):  
Fazal Wahab ◽  
Ikram Ullah Khan ◽  
Ignacio Rodriguez Polo ◽  
Hira Zubair ◽  
Charis Drummer ◽  
...  

Irisin, encoded by the FNDC5 gene, is a recently discovered endocrine factor mainly secreted as a myokine and adipokine. However, irisin/FNDC5 expression has also been reported in different other organs including components of the reproductive axis. Yet, there is the scarcity of data on FNDC5/irisin expression, regulation and its reproductive effects, particularly in primates. Here, we report the expression of FNDC5/irisin, along with PGC1A (peroxisome proliferator-activated receptor gamma coactivator 1-alpha) and ERRA (estrogen-related receptor alpha), in components of the reproductive axis of marmoset monkeys. Hypothalamic FNDC5 and ERRA transcript levels are developmentally regulated in both male and female. We further uncovered sex-specific differences in FNDC5, ERRA and PGC1A expression in muscle and the reproductive axis. Moreover, irisin and ERRα co-localize in the marmoset hypothalamus. Additionally, in the arcuate nucleus of rhesus monkeys, the number of irisin+ cells was significantly increased in short-term fasted monkeys as compared to ad libitum-fed monkeys. More importantly, we observed putative interaction of irisin-immunoreactive fibers and few GnRH-immunoreactive cell bodies in the mediobasal hypothalamus of the rhesus monkeys. Functionally, we noted a stimulatory effect of irisin on GnRH synthesis and release in mouse hypothalamic neuronal GT1-7 cells. In summary, our findings show that FNDC5 and irisin are developmentally, metabolic-status dependently and sex-specifically expressed in the primate hypothalamic–pituitary–gonadal axis and exert a stimulatory effect on GnRH expression and release in mouse hypothalamic cells. Further studies are required to confirm the reproductive effects of irisin in vivo and to illuminate the mechanisms of its regulation.


2021 ◽  
Vol 49 (11) ◽  
pp. 030006052110550
Author(s):  
Xing Wang ◽  
Shuchun Chen ◽  
Dan Lv ◽  
Zelin Li ◽  
Luping Ren ◽  
...  

Objective To investigate the effect of liraglutide on the browning of white fat and the suppression of obesity via regulating microRNA (miR)-27b in vivo and in vitro. Methods Sprague-Dawley rats were fed a high-fat (HF) diet and 3T3-L1 pre-adipocytes were differentiated into mature white adipocytes. Rats and mature adipocytes were then treated with different doses of liraglutide. The mRNA and protein levels of browning-associated proteins, including uncoupling protein 1 (UCP1), PR domain containing 16 (PRDM16), CCAAT enhancer binding protein β (CEBPβ), cell death-inducing DFFA-like effector A (CIDEA) and peroxisome proliferator-activated receptor-γ-coactivator 1α (PGC-1α), were detected using quantitative real-time polymerase chain reaction and Western blotting. Results Liraglutide decreased body weight and reduced the levels of blood glucose, triglyceride and low-density lipoprotein cholesterol in HF diet-fed rats. Liraglutide increased the levels of UCP1, PRDM16, CEBPβ, CIDEA and PGC-1α in vivo and vitro. The levels of miR-27b were upregulated in HF diet-fed rats, whereas liraglutide reduced the levels of miR-27b. In vitro, overexpression of miR-27b decreased the mRNA and protein levels of UCP1, PRDM16, CEBPβ, CIDEA and PGC-1α. Transfection with the miR-27b mimics attenuated the effect of liraglutide on the browning of white adipocytes. Conclusion Liraglutide induced browning of white adipose through regulation of miR-27b.


PPAR Research ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jilong Hu ◽  
Zhinan Zheng ◽  
Jia Lei ◽  
Yuxin Cao ◽  
Qiyun Li ◽  
...  

Enhancer of zeste homolog 2 (EZH2) is abnormally highly expressed in pancreatic cancer (PC). However, it is not ideal to treat PC by inhibiting EZH2. This study reported that the combined use of pan-peroxisome proliferator-activated receptor (PPAR) agonist could significantly improve the anti-PC effect of EZH2 inhibitor. In vitro, PC cell lines PANC-1 and AsPC-1 were cultured, and MTT and flow cytometry were performed to observe the effects of pan-PPAR agonist bezafibrate and EZH2 selective inhibitor GSK126 on cell viability and apoptosis. In vivo, CDXs of PANC-1 and AsPC-1 were established to observe the effects of bezafibrate and GSK126 on bearing tumors. Western blotting was performed to detect the protein expressions of H3K27me3, β-catenin, p-β-catenin, cyclin D1, c-Myc, and cleaved caspase 3 in vitro and in vivo. The results showed that bezafibrate significantly improved the effects of GSK126 on proliferation inhibition and apoptosis promotion in vitro and the growth suppression of CDX tumors in vivo. It also significantly enhanced the effects of GSK126 on upregulating the expression level of p-β-catenin and that of cleaved caspase 3 in vitro and in vivo. In parallel, downregulation of the expression levels of H3K27me3, β-catenin, cyclin D1, and c-Myc was also observed in vitro or in vivo. These results suggest that the combination of bezafibrate and GSK126 has synergistic effects on PC, and the molecular mechanism may be related to the enhanced inhibition of the Wnt/β-catenin signaling pathway. We believe that targeting the EZH2-PPAR axis is a potential therapeutic pathway for PC.


Sign in / Sign up

Export Citation Format

Share Document