scholarly journals Cross-Talk between Lipoproteins and Inflammation: The Role of Microvesicles

2019 ◽  
Vol 8 (12) ◽  
pp. 2059 ◽  
Author(s):  
Gemma Chiva-Blanch ◽  
Lina Badimon

Atherothrombosis is the principal underlying cause of cardiovascular disease (CVD). Microvesicles (MV) are small blebs originated by an outward budding at the cell plasma membranes, which are released in normal conditions. However, MV release is increased in pathophysiologic conditions such as CVD. Low density lipoprotein (LDL) and MV contribute to atherothrombosis onset and progression by promoting inflammation and leukocyte recruitment to injured endothelium, as well as by increasing thrombosis and plaque vulnerability. Moreover, (oxidized)LDL induces MV release and vice-versa, perpetuating endothelium injury leading to CVD progression. Therefore, MV and lipoproteins exhibit common features, which should be considered in the interpretation of their respective roles in the pathophysiology of CVD. Understanding the pathways implicated in this process will aid in developing novel therapeutic approaches against atherothrombosis.

Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 915
Author(s):  
Nataliya V. Mushenkova ◽  
Evgeny E. Bezsonov ◽  
Varvara A. Orekhova ◽  
Tatyana V. Popkova ◽  
Antonina V. Starodubova ◽  
...  

Atherosclerosis is a multifactorial chronic disease that has a prominent inflammatory component. Currently, atherosclerosis is regarded as an active autoimmune process that involves both innate and adaptive immune pathways. One of the drivers of this process is the presence of modified low-density lipoprotein (LDL). For instance, lipoprotein oxidation leads to the formation of oxidation-specific epitopes (OSE) that can be recognized by the immune cells. Macrophage response to OSEs is recognized as a key trigger for initiation and a stimulator of progression of the inflammatory process in the arteries. At the same time, the role of oxidized LDL components is not limited to pro-inflammatory stimulation, but includes immunoregulatory effects that can have protective functions. It is, therefore, important to better understand the complexity of oxidized LDL effects in atherosclerosis in order to develop new therapeutic approaches to correct the inflammatory and metabolic imbalance associated with this disorder. In this review, we discuss the process of oxidized LDL formation, mechanisms of OSE recognition by macrophages and the role of these processes in atherosclerosis.


2020 ◽  
Author(s):  
Li Lin ◽  
Ning Zhou ◽  
Le Kang ◽  
Qi Wang ◽  
Jian Wu ◽  
...  

Oxidized low-density lipoprotein (Ox-LDL) can induce cardiac hypertrophy, but the mechanism is still unclear. Here we elucidate the role of angiotensin II (AngII) receptor (AT1-R) in Ox-LDL-induced cardiomycyte hypertrophy. Inhibition of Ox-LDL receptor LOX-1 and AT1-R rather than AngII abolished Ox-LDL-induced hypertrophic responses. Similar results were obtained from the heart of mice lacking endogenous Ang II and their cardiomyocytes. Ox-LDL but not AngII induced binding of LOX-1 to AT1-R, and the inhibition of LOX-1 or AT1-R rather than AngII abolished the association of these two receptors. Ox-LDL-induced ERKs phosphorylation in LOX-1 and AT1-R-overexpression cells and the binding of both receptors were suppressed by the mutants of LOX-1 (Lys266Ala/Lys267Ala) or AT1-R (Glu257Ala), however, the AT1-R mutant lacking Gq protein-coupling ability only abolished the ERKs phosphorylation. The phosphorylation of ERKs induced by Ox-LDL in LOX-1 and AT1-R-overexpression cells was abrogated by Gq protein inhibitor but not by Jak2, Rac1 and RhoA inhibitors. Therefore, the direct interaction between LOX-1 and AT1-R and the downstream Gq protein activation are important mechanisms for Ox-LDL- but not AngII-induced cardiomyocyte hypertrophy


2018 ◽  
Vol 374 (1765) ◽  
pp. 20180147 ◽  
Author(s):  
Sasha A. Doodnauth ◽  
Sergio Grinstein ◽  
Michelle E. Maxson

Macrophages respond to several stimuli by forming florid membrane ruffles that lead to fluid uptake by macropinocytosis. This type of induced macropinocytosis, executed by a variety of non-malignant and malignant cells, is initiated by transmembrane receptors and is involved in nutrient acquisition and mTOR signalling. However, macrophages also perform a unique type of constitutive ruffling and macropinocytosis that is dependent on the presence of extracellular calcium. Calcium-sensing receptors are responsible for this activity. This distinct form of macropinocytosis enables macrophages to continuously sample their microenvironment for antigenic molecules and for pathogen- and danger-associated molecular patterns, as part of their immune surveillance functions. Interestingly, even within the monocyte lineage, there are differences in macropinocytic ability that reflect the polarized functional roles of distinct macrophage subsets. This review discusses the shared and distinct features of both induced and constitutive macropinocytosis displayed by the macrophage lineage and their roles in physiology, immunity and pathophysiology. In particular, we analyse the role of macropinocytosis in the uptake of modified low-density lipoprotein (LDL) and its contribution to foam cell and atherosclerotic plaque formation. We propose a combined role of scavenger receptors and constitutive macropinocytosis in oxidized LDL uptake, a process we have termed ‘receptor-assisted macropinocytosis'. This article is part of the Theo Murphy meeting issue ‘Macropinocytosis’.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Felipe A. Zuniga ◽  
Valeska Ormazabal ◽  
Nicolas Gutierrez ◽  
Valeria Aguilera ◽  
Claudia Radojkovic ◽  
...  

The bioavailability of nitric oxide (NO) represents a key marker in vascular health. A decrease in NO induces a pathological condition denominated endothelial dysfunction, syndrome observed in different pathologies, such as obesity, diabetes, kidney disease, cardiovascular disease, and preeclampsia (PE). PE is one of the major risks for maternal death and fetal loss. Recent studies suggest that the placenta of pregnant women with PE express high levels of lectin-like oxidized LDL receptor-1 (LOX-1), which induces endothelial dysfunction by increasing reactive oxygen species (ROS) and decreasing intracellular NO. Besides LOX-1 activation induces changes in migration and apoptosis of syncytiotrophoblast cells. However, the role of this receptor in placental tissue is still unknown. In this review we will describes the physiological roles of LOX-1 in normal placenta development and the potential involvement of this receptor in the pathophysiology of PE.


Biologia ◽  
2017 ◽  
Vol 72 (2) ◽  
Author(s):  
Panit Yamchuen ◽  
Rattima Jeenapongsa ◽  
Sutisa Nudmamud-Thanoi ◽  
Nanteetip Limpeanchob

AbstractHypercholesterolemia has been considered as a risk factor for Alzheimer’s disease (AD). In addition to low density lipoprotein (LDL), oxidized LDL plays some roles in AD pathology. Neurodegenerative effect of oxidized LDL was supported by the increased oxidative stress in neurons. To further investigate the role of oxidized LDL, the present study aimed to test its effect on amyloid precursor protein (APP) processing. The release of soluble APP (sAPP) was evaluated in differentiated SH-SY5Y neuroblastoma cells exposed to native (non-oxidized) or oxidized human LDL including mildly and fully oxidized LDL (mox- and fox-LDL). Non-amyloidogenic and amyloidogenic pathways were investigated using specific antibody against sAPP


2019 ◽  
Vol 2019 ◽  
pp. 1-32 ◽  
Author(s):  
Patricia Marchio ◽  
Sol Guerra-Ojeda ◽  
José M. Vila ◽  
Martín Aldasoro ◽  
Victor M. Victor ◽  
...  

Atherosclerosis is a chronic vascular inflammatory disease associated to oxidative stress and endothelial dysfunction. Oxidation of low-density lipoprotein (LDL) cholesterol is one of the key factors for the development of atherosclerosis. Nonoxidized LDL have a low affinity for macrophages, so they are not themselves a risk factor. However, lowering LDL levels is a common clinical practice to reduce oxidation and the risk of major events in patients with cardiovascular diseases (CVD). Atherosclerosis starts with dysfunctional changes in the endothelium induced by disturbed shear stress which can lead to endothelial and platelet activation, adhesion of monocytes on the activated endothelium, and differentiation into proinflammatory macrophages, which increase the uptake of oxidized LDL (oxLDL) and turn into foam cells, exacerbating the inflammatory signalling. The atherosclerotic process is accelerated by a myriad of factors, such as the release of inflammatory chemokines and cytokines, the generation of reactive oxygen species (ROS), growth factors, and the proliferation of vascular smooth muscle cells. Inflammation and immunity are key factors for the development and complications of atherosclerosis, and therefore, the whole atherosclerotic process is a target for diagnosis and treatment. In this review, we focus on early stages of the disease and we address both biomarkers and therapeutic approaches currently available and under research.


2005 ◽  
Vol 35 (3) ◽  
pp. 531-545 ◽  
Author(s):  
B Löhrke ◽  
T Viergutz ◽  
B Krüger

The role of endogenously oxidized low density lipoprotein (oxLDL) in follicular steroidogenic regulation is unknown. Information may be important in order to elucidate ovulatory dysregulation in disordered lipid metabolism. To obtain specific data, we studied the effect of polar phospholipids (PL) isolated from oxLDL with different endogenous levels of lipohydroperoxides (LHP) on the thecal expression of mRNA encoding steroidogenic enzymes and cyclooxygenase 2 (COX-2), and on the thecal production of superoxide and progesterone. Large (preovulatory) bovine follicles were used and analyses of thecal fragments from single follicles were performed by radioimmunoassays, chemiluminescence assays and quantitative RT-PCR. Basal concentration of mRNA for several lipoprotein receptors exceeded by about 10-times the basal level of mRNA encoding steroidogenic enzymes, suggesting that preovulatory theca receptors may favour uptake of oxLDL. PL (5–11 pmol phosphorus/ml) decreased (up to 0.5-times the control) progesterone synthesis, production of superoxide and levels of P450 cholesterol side chain cleavage (P450 scc), 3β-hydroxysteroid dehydrogenase and COX-2 mRNA. Abundance of COX-2 transcripts in thecal tissue incubated with forskolin depended on the progesterone/17β-oestradiol ratio of the follicle fluid, i.e. the previous microenvironment in vivo. PL effects were mimicked by the platelet-activating factor (PAF). WEB 2086, a PAF receptor blocker, did not always abolish these responses, suggesting that the effects were not mediated solely by this receptor. PAF interfered dose-dependently with LH-induced responses, indicating interference with LH signalling. PL from mildly oxidized LDL (0.5 nmol/ml LHP) tended to exert greater effects than PL from oxLDL containing 1.5 nmol/ml LHP. In consideration of the known physiologic role of progesterone, COX-2 and possibly superoxide, these results provide evidence for a potential of PL from oxLDL to induce ovulatory dysregulation and suggest that the extent of the LDL oxidation seems to be important for interfering with thecal responses to the preovulatory LH surge.


2015 ◽  
Vol 129 (12) ◽  
pp. 1195-1206 ◽  
Author(s):  
H.K. Irundika Dias ◽  
Caroline L.R. Brown ◽  
M. Cristina Polidori ◽  
Gregory Y.H. Lip ◽  
Helen R. Griffiths

We have established a novel anti-inflammatory and antioxidant role of statins towards oxidized fats in the “bad” cholesterol low density lipoprotein (LDL) particle from the blood of mid-life adults with high cholesterol. Oxidized LDL-fat levels were also higher in the blood of patients with dementia and caused inflammatory damage to cells that line blood vessels.


Author(s):  
Joaquim Barreto ◽  
Sotirios K. Karathanasis ◽  
Alan Remaley ◽  
Andrei C. Sposito

Atherosclerosis, the underlying cause of cardiovascular disease (CVD), is a worldwide cause of morbidity and mortality. Reducing ApoB-containing lipoproteins—chiefly, LDL (low-density lipoprotein)—has been the main strategy for reducing CVD risk. Although supported by large randomized clinical trials, the persistence of residual cardiovascular risk after effective LDL reduction has sparked an intense search for other novel CVD biomarkers and therapeutic targets. Recently, Lox-1 (lectin-type oxidized LDL receptor 1), an innate immune scavenger receptor, has emerged as a promising target for early diagnosis and CV risk prediction and is also being considered as a treatment target. Lox-1 was first described as a 50 kDa transmembrane protein in endothelial cells responsible for oxLDL (oxidized LDL) recognition, triggering downstream pathways that intensify atherosclerosis via endothelial dysfunction, oxLDL uptake, and apoptosis. Lox-1 is also expressed in platelets, where it enhances platelet activation, adhesion to endothelial cells, and ADP-mediated aggregation, thereby favoring thrombus formation. Lox-1 was also identified in cardiomyocytes, where it was implicated in the development of cardiac fibrosis and myocyte apoptosis, the main determinants of cardiac recovery following an ischemic insult. Together, these findings have revealed that Lox-1 is implicated in all the main steps of atherosclerosis and has encouraged the development of immunoassays for measurement of sLox-1 (serum levels of soluble Lox-1) to be used as a potential CVD biomarker. Finally, the recent development of synthetic Lox-1 inhibitors and neutralizing antibodies with promising results in animal models has made Lox-1 a target for drug development. In this review, we discuss the main findings regarding the role of Lox-1 in the development, diagnosis, and therapeutic strategies for CVD prevention and treatment.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Xin-Yuan Wang ◽  
Tian-Le Ma ◽  
Kang-Ning Chen ◽  
Zhi-Ying Pang ◽  
Hao Wang ◽  
...  

Abstract Background Osteonecrosis of the femoral head (ONFH) is a common but intractable disease that appears to involve lipid metabolic disorders. Although numerous studies have demonstrated that high blood levels of low-density lipoprotein (LDL) are closely associated with ONFH, there is limited evidence to explain the pathological role of LDL. Pathological and in vitro studies were performed to investigate the role of disordered metabolism of LDL and oxidized LDL (ox-LDL) in the femoral head in the pathology of ONFH. Methods Nineteen femoral head specimens from patients with ONFH were obtained for immunohistochemistry analysis. Murine long-bone osteocyte Y4 cells were used to study the effects of LDL/ox-LDL on cell viability, apoptosis, and metabolism process of LDL/ox-LDL in osteocytes in normoxic and hypoxic environments. Results In the pathological specimens, marked accumulation of LDL/ox-LDL was observed in osteocytes/lacunae of necrotic regions compared with healthy regions. In vitro studies showed that ox-LDL, rather than LDL, reduced the viability and enhanced apoptosis of osteocytes. Pathological sections indicated that the accumulation of ox-LDL was significantly associated with impaired blood supply. Exposure to a hypoxic environment appeared to be a key factor leading to LDL/ox-LDL accumulation by enhancing internalisation and oxidation of LDL in osteocytes. Conclusions The accumulation of LDL/ox-LDL in the necrotic region may contribute to the pathology of ONFH. These findings could provide new insights into the prevention and treatment of ONFH.


Sign in / Sign up

Export Citation Format

Share Document