scholarly journals The Incidence of Chronic Kidney Disease Three Years after Non-Severe Acute Kidney Injury in Critically Ill Patients: A Single-Center Cohort Study

2019 ◽  
Vol 8 (12) ◽  
pp. 2215 ◽  
Author(s):  
Sébastien Rubin ◽  
Arthur Orieux ◽  
Benjamin Clouzeau ◽  
Claire Rigothier ◽  
Christian Combe ◽  
...  

The risk of chronic kidney disease (CKD) following severe acute kidney injury (AKI) in critically ill patients is well documented, but not after less severe AKI. The main objective of this study was to evaluate the long-term incidence of CKD after non-severe AKI in critically ill patients. This prospective single-center observational three-years follow-up study was conducted in the medical intensive care unit in Bordeaux’s hospital (France). From 2013 to 2015, all patients with severe (kidney disease improving global outcomes (KDIGO) stage 3) and non-severe AKI (KDIGO stages 1, 2) were enrolled. Patients with prior eGFR < 90 mL/min/1.73 m2 were excluded. Primary outcome was the three-year incidence of CKD stages 3 to 5 in the non-severe AKI group. We enrolled 232 patients. Non-severe AKI was observed in 112 and severe AKI in 120. In the non-severe AKI group, 71 (63%) were male, age was 62 ± 16 years. The reason for admission was sepsis for 56/112 (50%). Sixty-two (55%) patients died and nine (8%) were lost to follow-up. At the end of the follow-up the incidence of CKD was 22% (9/41); Confidence Interval (CI) 95% (9.3–33.60)% in the non-severe AKI group, tending to be significantly lower than in the severe AKI group (44% (14/30); CI 95% (28.8–64.5)%; p = 0.052). The development of CKD three years after non-severe AKI, despite it being lower than after severe AKI, appears to be a frequent event highlighting the need for prolonged follow-up.

Heart & Lung ◽  
2020 ◽  
Vol 49 (5) ◽  
pp. 626-629
Author(s):  
Maysoon S. Abdalrahim ◽  
Amani A. Khalil ◽  
Manal Alramly ◽  
Khalid Nabeel Alshlool ◽  
Mona A. Abed ◽  
...  

Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 686-686
Author(s):  
Santosh L. Saraf ◽  
Maya Viner ◽  
Ariel Rischall ◽  
Binal Shah ◽  
Xu Zhang ◽  
...  

Abstract Acute kidney injury (AKI) is associated with tubulointerstitial fibrosis and nephron loss and may lead to an increased risk for subsequently developing chronic kidney disease (CKD). In adults with sickle cell anemia (SCA), high rates of CKD have been consistently observed, although the incidence and risk factors for AKI are less clear. We evaluated the incidence of AKI, defined according to Kidney Disease Improving Global Outcomes (KDIGO) guidelines as a rise in serum creatinine by ≥0.3mg/dL within 48 hours or ≥1.5 times baseline within seven days, in 158 of 299 adult SCA patients enrolled in a longitudinal cohort from the University of Illinois at Chicago. These patients were selected based on the availability of genotyping for α-thalassemia, BCL11A rs1427407, APOL1 G1/G2, and the HMOX1 rs743811 and GT-repeat variants. Median values and interquartile range (IQR) are provided. With a median follow up time of 66 months (IQR, 51-74 months), 137 AKI events were observed in 63 (40%) SCA patients. AKI was most commonly observed in the following settings: acute chest syndrome (25%), an uncomplicated vaso-occlusive crisis (VOC)(24%), a VOC with pre-renal azotemia determined by a fractional excretion of sodium &lt;1% or BUN-to-creatinine ratio &gt;20:1 (14%), or a VOC with increased hemolysis, defined as an increase in serum LDH or indirect bilirubin level &gt;1.5 times over the baseline value at the time of enrollment (12%). Compared to individuals who did not develop AKI, SCA adults who developed an AKI event were older (AKI: median and IQR age of 35 (26-46) years, no AKI: 28 (23 - 26) years; P=0.01) and had a lower estimated glomerular filtration rate (eGFR) (AKI: median and IQR eGFR of 123 (88-150) mL/min/1.73m2, no AKI: 141 (118-154) mL/min/1.73m2; P=0.02) by the Kruskal-Wallis test at the time of enrollment. We evaluated the association of a panel of candidate gene variants with the risk of developing an AKI event. These included loci related to the degree of hemolysis (α-thalassemia, BCL11A rs1427407), to chronic kidney disease (APOL1 G1/G2 risk variants), and to heme metabolism (HMOX1) . Using a logistic regression model that adjusted for age and eGFR at the time of enrollment, the risk of an AKI event was associated with older age (10-year OR 2.6, 95%CI 1.4-4.8, P=0.002), HMOX1 rs743811 (OR 3.1, 95%CI 1.1-8.7, P=0.03), and long HMOX1 GT-repeats, defined as &gt;25 repeats (OR 2.5, 95%CI 1.01-6.1, P=0.04). Next, we assessed whether AKI is associated with a more rapid decline in eGFR and with CKD progression, defined as a 50% reduction in eGFR, on longitudinal follow up. Using a mixed effects model that adjusted for age and eGFR at the time of enrollment, the rate of eGFR decline was significantly greater in those with an AKI event (β = -0.51) vs. no AKI event (β = -0.16) (P=0.03). With a median follow up time of 66 months (IQR, 51-74 months), CKD progression was observed in 21% (13/61) of SCA patients with an AKI event versus 9% (8/88) without an AKI event. After adjusting for age and eGFR at the time of enrollment, the severity of an AKI event according to KDIGO guidelines (stage 1 if serum creatinine rises 1.5-1.9 times baseline, stage 2 if the rise is 2.0-2.9 times baseline, and stage 3 if the rise is ≥3 times baseline or ≥4.0 mg/dL or requires renal replacement therapy) was a risk factor for CKD progression (unadjusted HR 1.6, 95%CI 1.1-2.3, P=0.02; age- and eGFR-adjusted HR 1.6, 95%CI 1.1-2.5, P=0.03). In conclusion, AKI is commonly observed in adults with sickle cell anemia and is associated with increasing age and the HMOX1 GT-repeat and rs743811 polymorphisms. Furthermore, AKI may be associated with a steeper decline in kidney function and more severe AKI events may be a risk factor for subsequent CKD progression in SCA. Future studies understanding the mechanisms, consequences of AKI on long-term kidney function, and therapies to prevent AKI in SCA are warranted. Disclosures Gordeuk: Emmaus Life Sciences: Consultancy.


2021 ◽  
Vol 10 (13) ◽  
pp. 42-42
Author(s):  
Yue Yu ◽  
Huipeng Ge ◽  
Xiufen Wang ◽  
Zhonghua Huang ◽  
Lei Chen ◽  
...  

2019 ◽  
Vol 6 ◽  
pp. 205435811988018 ◽  
Author(s):  
Erin Hessey ◽  
Sylvie Perreault ◽  
Marc Dorais ◽  
Louise Roy ◽  
Michael Zappitelli

Background: The progression from acute kidney injury (AKI) to chronic kidney disease (CKD) is not well understood in children. Objectives: We aimed to develop a pediatric CKD definition using administrative data and use it to evaluate the association between AKI in critically ill children and CKD 5 years after hospital discharge. Design: Retrospective cohort study using chart collection and administrative data. Setting: Two-center study in Montreal, Canada. Patients: Children (≤18 years old) admitted to two pediatric intensive care units (ICUs) between 2003 and 2005. We a priori excluded patients with end-stage renal disease or no health care number. Only the first admission during the study period was included. We excluded patients who could not be linked to administrative data, did not survive hospitalization, or had preexisting renal disease. Measurements: Acute kidney injury was defined using Kidney Disease: Improving Global Outcomes (KDIGO) criteria. Patients were defined as having CKD 5 years post-discharge if they had ≥1 CKD diagnostic code or ≥1 CKD-specific medication prescription. Methods: Chart data used to define the exposure (AKI) were merged with provincial administrative data used to define the outcome (CKD). Cox regression was used to evaluate the AKI-CKD association. Results: A total of 2235 (56% male) patients were included, and the median admission age was 3.7 years. A total of 464 (21%) patients developed AKI during pediatric ICU admission. At 5 years post-discharge, 43 (2%) patients had a CKD diagnosis. Patients with both stage 1 and stage 2-3 AKI had increased risk of a CKD diagnosis, with the adjusted hazard ratios (95% confidence intervals) of 2.2 (1.1-4.5) and 2.5 (1.1-5.7), respectively ( P < .001). Limitations: Results may not be generalizable to non-ICU patients. We were not able to control for post-discharge variables; future research should try to explore these additional potential risk factors further. Conclusions: Acute kidney injury is associated with 5-year post-discharge CKD diagnosis defined by administrative health care data.


2018 ◽  
Author(s):  
Monica G Valero ◽  
Zara Cooper

Acute kidney injury is a common disease that affects critically ill patients and increases morbidity and mortality. Even though there have been extensive efforts to prevent this disease, the incidence has steadily increased over the last decade. This could be attributed to better recognition or to overestimation of the disease based on the most recent consensus criteria. Complications of acute kidney injury have a significant effect on quality of life, morbidity, and mortality. Despite advances in the field, this disease continues to be a challenge, and decreasing the mortality associated with it remains difficult. Plenty of literature has been published about the appropriate definition, diagnosis, and treatment of the disease. One of the topics of ongoing discussion deals with the lack of consensus about the exact timing for initiation of renal replacement therapy (RRT). Even though RRT adds more complexity to the treatment, recent publications suggest that early versus late initiation of RRT is related to reduced mortality in critically ill patients. Further high-level studies of this intervention are warranted to standardize treatment. This review contains 5 figures, 7 tables, and 77 references.               Key words: Acute Kidney Injury Network (AKIN), acute kidney injury, chronic kidney disease, Kidney Disease: Improving Global Outcomes (KDIGO), renal biomarkers, replacement therapy, Risk, Injury, Failure, Loss of kidney function and End-stage kidney disease (RIFLE)


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3463-3463
Author(s):  
Tatsunori Shimoi ◽  
Minoru Ando ◽  
Takeshi Kobayashi ◽  
Kazuhiko Kakihana ◽  
Takuya Yamashita ◽  
...  

Abstract Abstract 3463 Introduction: Chronic kidney disease (CKD) is common in survivors of hematopoietic stem cell transplantation (SCT). However, evolution over time of kidney dysfunction and its association with post-SCT acute kidney injury (AKI) are unclear. Methods: A retrospective cohort study was performed in 86 myeloablative allogenic SCT patients who received SCT between 1990 and 1999 and lived without relapse for 10 years or more. CKD was defined as a sustained decrease in estimated GFR less than 60 ml/min/1.73 m2 at least for a period more than 3 months. Post-SCT AKI was classified into three stages according to the acute kidney injury network (AKIN) criteria within 100 days after SCT. Incidence of new-onset CKD was studied by 1-year interval along the course of follow-up. Cumulative CKD incidence was evaluated by the Kaplan-Meier analysis. The factors associated with CKD at the time of 10 years after SCT were examined using Cox regression analysis. Results: The incident of new CKD was the highest (10.5%) at the first year after SCT and then remained almost constant (2.3 to 3.5%) (Figure 1). The prevalence of CKD increased along the follow-up time (Table 1). The cumulative incidence of CKD increased according to increasing AKI stages with significant difference between stages ≥1 and no AKI (Figure 2). Cox regression showed that each AKIN stage was a significant predictor of CKD: stage 3: hazard ratio (HR) 12.7, 95% confidence interval (CI) 2.42–97.6; stage 2: HR 7.75, 95% CI 1.83–53.6; and stage 1: HR 4.36, 95% CI 1.06–29.5. Other predictors included total body irradiation (TBI) (HR, 4.00; 95% CI, 1.63–10.5) and age on SCT (HR, 1.08; 95% CI, 1.03–1.13). Conclusions: CKD accumulated among long-term survivors receiving myeloablative allogenic SCT. Post-SCT AKI, regardless of the AKIN stages, is the most significant risk of CKD in such SCT population. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document