scholarly journals Transfer Learning via Deep Neural Networks for Implant Fixture System Classification Using Periapical Radiographs

2020 ◽  
Vol 9 (4) ◽  
pp. 1117 ◽  
Author(s):  
Jong-Eun Kim ◽  
Na-Eun Nam ◽  
June-Sung Shim ◽  
Yun-Hoa Jung ◽  
Bong-Hae Cho ◽  
...  

In the absence of accurate medical records, it is critical to correctly classify implant fixture systems using periapical radiographs to provide accurate diagnoses and treatments to patients or to respond to complications. The purpose of this study was to evaluate whether deep neural networks can identify four different types of implants on intraoral radiographs. In this study, images of 801 patients who underwent periapical radiographs between 2005 and 2019 at Yonsei University Dental Hospital were used. Images containing the following four types of implants were selected: Brånemark Mk TiUnite, Dentium Implantium, Straumann Bone Level, and Straumann Tissue Level. SqueezeNet, GoogLeNet, ResNet-18, MobileNet-v2, and ResNet-50 were tested to determine the optimal pre-trained network architecture. The accuracy, precision, recall, and F1 score were calculated for each network using a confusion matrix. All five models showed a test accuracy exceeding 90%. SqueezeNet and MobileNet-v2, which are small networks with less than four million parameters, showed an accuracy of approximately 96% and 97%, respectively. The results of this study confirmed that convolutional neural networks can classify the four implant fixtures with high accuracy even with a relatively small network and a small number of images. This may solve the inconveniences associated with unnecessary treatments and medical expenses caused by lack of knowledge about the exact type of implant.

2016 ◽  
Vol 807 ◽  
pp. 155-166 ◽  
Author(s):  
Julia Ling ◽  
Andrew Kurzawski ◽  
Jeremy Templeton

There exists significant demand for improved Reynolds-averaged Navier–Stokes (RANS) turbulence models that are informed by and can represent a richer set of turbulence physics. This paper presents a method of using deep neural networks to learn a model for the Reynolds stress anisotropy tensor from high-fidelity simulation data. A novel neural network architecture is proposed which uses a multiplicative layer with an invariant tensor basis to embed Galilean invariance into the predicted anisotropy tensor. It is demonstrated that this neural network architecture provides improved prediction accuracy compared with a generic neural network architecture that does not embed this invariance property. The Reynolds stress anisotropy predictions of this invariant neural network are propagated through to the velocity field for two test cases. For both test cases, significant improvement versus baseline RANS linear eddy viscosity and nonlinear eddy viscosity models is demonstrated.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Yu Fujinami-Yokokawa ◽  
Nikolas Pontikos ◽  
Lizhu Yang ◽  
Kazushige Tsunoda ◽  
Kazutoshi Yoshitake ◽  
...  

Purpose. To illustrate a data-driven deep learning approach to predicting the gene responsible for the inherited retinal disorder (IRD) in macular dystrophy caused by ABCA4 and RP1L1 gene aberration in comparison with retinitis pigmentosa caused by EYS gene aberration and normal subjects. Methods. Seventy-five subjects with IRD or no ocular diseases have been ascertained from the database of Japan Eye Genetics Consortium; 10 ABCA4 retinopathy, 20 RP1L1 retinopathy, 28 EYS retinopathy, and 17 normal patients/subjects. Horizontal/vertical cross-sectional scans of optical coherence tomography (SD-OCT) at the central fovea were cropped/adjusted to a resolution of 400 pixels/inch with a size of 750 × 500 pix2 for learning. Subjects were randomly split following a 3 : 1 ratio into training and test sets. The commercially available learning tool, Medic mind was applied to this four-class classification program. The classification accuracy, sensitivity, and specificity were calculated during the learning process. This process was repeated four times with random assignment to training and test sets to control for selection bias. For each training/testing process, the classification accuracy was calculated per gene category. Results. A total of 178 images from 75 subjects were included in this study. The mean training accuracy was 98.5%, ranging from 90.6 to 100.0. The mean overall test accuracy was 90.9% (82.0–97.6). The mean test accuracy per gene category was 100% for ABCA4, 78.0% for RP1L1, 89.8% for EYS, and 93.4% for Normal. Test accuracy of RP1L1 and EYS was not high relative to the training accuracy which suggests overfitting. Conclusion. This study highlighted a novel application of deep neural networks in the prediction of the causative gene in IRD retinopathies from SD-OCT, with a high prediction accuracy. It is anticipated that deep neural networks will be integrated into general screening to support clinical/genetic diagnosis, as well as enrich the clinical education.


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6666
Author(s):  
Kamil Książek ◽  
Michał Romaszewski ◽  
Przemysław Głomb ◽  
Bartosz Grabowski ◽  
Michał Cholewa

In recent years, growing interest in deep learning neural networks has raised a question on how they can be used for effective processing of high-dimensional datasets produced by hyperspectral imaging (HSI). HSI, traditionally viewed as being within the scope of remote sensing, is used in non-invasive substance classification. One of the areas of potential application is forensic science, where substance classification on the scenes is important. An example problem from that area—blood stain classification—is a case study for the evaluation of methods that process hyperspectral data. To investigate the deep learning classification performance for this problem we have performed experiments on a dataset which has not been previously tested using this kind of model. This dataset consists of several images with blood and blood-like substances like ketchup, tomato concentrate, artificial blood, etc. To test both the classic approach to hyperspectral classification and a more realistic application-oriented scenario, we have prepared two different sets of experiments. In the first one, Hyperspectral Transductive Classification (HTC), both a training and a test set come from the same image. In the second one, Hyperspectral Inductive Classification (HIC), a test set is derived from a different image, which is more challenging for classifiers but more useful from the point of view of forensic investigators. We conducted the study using several architectures like 1D, 2D and 3D convolutional neural networks (CNN), a recurrent neural network (RNN) and a multilayer perceptron (MLP). The performance of the models was compared with baseline results of Support Vector Machine (SVM). We have also presented a model evaluation method based on t-SNE and confusion matrix analysis that allows us to detect and eliminate some cases of model undertraining. Our results show that in the transductive case, all models, including the MLP and the SVM, have comparative performance, with no clear advantage of deep learning models. The Overall Accuracy range across all models is 98–100% for the easier image set, and 74–94% for the more difficult one. However, in a more challenging inductive case, selected deep learning architectures offer a significant advantage; their best Overall Accuracy is in the range of 57–71%, improving the baseline set by the non-deep models by up to 9 percentage points. We have presented a detailed analysis of results and a discussion, including a summary of conclusions for each tested architecture. An analysis of per-class errors shows that the score for each class is highly model-dependent. Considering this and the fact that the best performing models come from two different architecture families (3D CNN and RNN), our results suggest that tailoring the deep neural network architecture to hyperspectral data is still an open problem.


Author(s):  
Hajar Maseeh Yasin ◽  
Adnan Mohsin Abdulazeez

Image compression is an essential technology for encoding and improving various forms of images in the digital era. The inventors have extended the principle of deep learning to the different states of neural networks as one of the most exciting machine learning methods to show that it is the most versatile way to analyze, classify, and compress images. Many neural networks are required for image compressions, such as deep neural networks, artificial neural networks, recurrent neural networks, and convolution neural networks. Therefore, this review paper discussed how to apply the rule of deep learning to various neural networks to obtain better compression in the image with high accuracy and minimize loss and superior visibility of the image. Therefore, deep learning and its application to different types of images in a justified manner with distinct analysis to obtain these things need deep learning.


Author(s):  
Aydin Ayanzadeh ◽  
Sahand Vahidnia

In this paper, we leverage state of the art models on Imagenet data-sets. We use the pre-trained model and learned weighs to extract the feature from the Dog breeds identification data-set. Afterwards, we applied fine-tuning and dataaugmentation to increase the performance of our test accuracy in classification of dog breeds datasets. The performance of the proposed approaches are compared with the state of the art models of Image-Net datasets such as ResNet-50, DenseNet-121, DenseNet-169 and GoogleNet. we achieved 89.66% , 85.37% 84.01% and 82.08% test accuracy respectively which shows thesuperior performance of proposed method to the previous works on Stanford dog breeds datasets.


Author(s):  
Roy Assaf ◽  
Anika Schumann

We demonstrate that CNN deep neural networks can not only be used for making predictions based on multivariate time series data, but also for explaining these predictions. This is important for a number of applications where predictions are the basis for decisions and actions. Hence, confidence in the prediction result is crucial. We design a two stage convolutional neural network architecture which uses particular kernel sizes. This allows us to utilise gradient based techniques for generating saliency maps for both the time dimension and the features. These are then used for explaining which features during which time interval are responsible for a given prediction, as well as explaining during which time intervals was the joint contribution of all features most important for that prediction. We demonstrate our approach for predicting the average energy production of photovoltaic power plants and for explaining these predictions.


Author(s):  
Yunpeng Chen ◽  
Xiaojie Jin ◽  
Bingyi Kang ◽  
Jiashi Feng ◽  
Shuicheng Yan

The residual unit and its variations are wildly used in building very deep neural networks for alleviating optimization difficulty. In this work, we revisit the standard residual function as well as its several successful variants and propose a unified framework based on tensor Block Term Decomposition (BTD) to explain these apparently different residual functions from the tensor decomposition view. With the BTD framework, we further propose a novel basic network architecture, named the Collective Residual Unit (CRU). CRU further enhances parameter efficiency of deep residual neural networks by sharing core factors derived from collective tensor factorization over the involved residual units. It enables efficient knowledge sharing across multiple residual units, reduces the number of model parameters, lowers the risk of over-fitting, and provides better generalization ability. Extensive experimental results show that our proposed CRU network brings outstanding parameter efficiency -- it achieves comparable classification performance with ResNet-200 while using a model size as small as ResNet-50 on the ImageNet-1k and Places365-Standard benchmark datasets.


Author(s):  
Shiva Prasad Kasiviswanathan ◽  
Nina Narodytska ◽  
Hongxia Jin

Deep neural networks are powerful learning models that achieve state-of-the-art performance on many computer vision, speech, and language processing tasks. In this paper, we study a fundamental question that arises when designing deep network architectures: Given a target network architecture can we design a `smaller' network architecture that 'approximates' the operation of the target network? The question is, in part, motivated by the challenge of parameter reduction (compression) in modern deep neural networks, as the ever increasing storage and memory requirements of these networks pose a problem in resource constrained environments.In this work, we focus on deep convolutional neural network architectures, and propose a novel randomized tensor sketching technique that we utilize to develop a unified framework for approximating the operation of both the convolutional and fully connected layers. By applying the sketching technique along different tensor dimensions, we design changes to the convolutional and fully connected layers that substantially reduce the number of effective parameters in a network. We show that the resulting smaller network can be trained directly, and has a classification accuracy that is comparable to the original network.


Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4480
Author(s):  
Ilya I. Kurochkin ◽  
Ilya N. Kurochkin ◽  
Olga Yu. Kolosova ◽  
Vladimir I. Lozinsky

Macroporous poly(vinyl alcohol) cryogels (PVACGs) are physical gels formed via cryogenic processing of polymer solutions. The properties of PVACGs depend on many factors: the characteristics and concentration of PVA, the absence or presence of foreign solutes, and the freezing-thawing conditions. These factors also affect the macroporous morphology of PVACGs, their total porosity, pore size and size distribution, etc. In this respect, there is the problem with developing a scientifically-grounded classification of the morphological features inherent in various PVACGs. In this study PVA cryogels have been prepared at different temperatures when the initial polymer solutions contained chaotropic or kosmotropic additives. After the completion of gelation, the rigidity and heat endurance of the resultant PVACGs were evaluated, and their macroporous structure was investigated using optical microscopy. The images obtained were treated mathematically, and deep neural networks were used for the classification of these images. Training and test sets were used for their classification. The results of this classification for the specific deep neural network architecture are presented, and the morphometric parameters of the macroporous structure are discussed. It was found that deep neural networks allow us to reliably classify the type of additive or its absence when using a combined dataset.


Sign in / Sign up

Export Citation Format

Share Document