scholarly journals The Effects of Some Phosphorus-Containing Fire Retardants on the Properties of Glass Fibre-Reinforced Composite Laminates Made from Blends of Unsaturated Polyester and Phenolic Resins

2021 ◽  
Vol 5 (10) ◽  
pp. 258
Author(s):  
Latha Krishnan ◽  
Baljinder. K. Kandola ◽  
John R. Ebdon

This study investigated the effects of phosphorus fire retardants (FRs) in matrices from co-cured blends of an unsaturated polyester (UP) with inherently fire-retardant phenolic resoles (PH) on the mechanical and flammability properties of resultant glass fibre-reinforced composites. Three different phenolic resoles with UP have been used: (i) an ethanol soluble (PH-S), (ii) an epoxy-functionalised (PH-Ep), and (iii) an allyl-functionalised resin (PH-Al) with two different phosphorus FRs: resorcinol bis (diphenyl phosphate) (RDP) and 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO). The flammabilities of the resultant composites were evaluated using cone calorimetry and the UL-94 test. Cone calorimetric results showed reductions in peak heat release rate (PHRR) and total heat released (THR) as expected compared to those of UP and respective UP/PH composite laminates without FRs. UL-94 tests results showed that while all composites had HB rating, FR containing samples self-extinguished after removal of the flame. The mechanical properties of the composites were evaluated using flexural, tensile and impact tests. All FRs reduced the mechanical properties, and the reduction in mechanical properties was more severe in UP/PH-S (least compatible blends) composites with FRs than in UP/PH-Al (most compatible blends) composites with FRs. Amongst the different composites, those from UP/PH-Al with DOPO showed the best fire retardancy with little deterioration of mechanical performance.

Author(s):  
R. Amitkumar ◽  
Kanu Priya Jhanji ◽  
P.S. Venkatanarayanan ◽  
M.Joel Soris ◽  
Nishanth Srikanth

Use of composite laminates is found in various applications such as aircraft and automotive, sports, rocket parts and civil structures. Resin system of the polymer composites enacts a crucial role of binding the reinforcements properly to provide good mechanical properties. The presence of any kind of filler alters the properties of resin system which in turn also alters the mechanical behaviour of composite laminate. In the present work an attempt has been made to enhance the mechanical performance of glass fibre epoxy composites by embedding nano calcium carbonate particles in resin system. These particles were added in different weight fractions like 1, 3 and 5% and the response of GFRP nano composites were recorded under flexural and shear loads. Composite laminates with 3% wt. of nano particles have shown considerable improvement among the other laminates.


2005 ◽  
Vol 901 ◽  
Author(s):  
Malte H.G. Wichmann ◽  
Florian H. Gojny ◽  
Jan Sumfleth ◽  
Bodo Fiedler ◽  
Karl Schulte

AbstractIncreasing the mechanical performance, e.g. strength, toughness and fatigue properties of composites is the objective of many ongoing research projects. Nanoparticles, e.g. carbon nanotubes (CNTs) and fumed silica provide a high potential for the reinforcement of polymers. Their size in the nanometre regime make them suitable candidates for the reinforcement of fibre reinforced polymers, as they may penetrate the reinforcing fibre-network without disturbing the fibre-arrangement.In this work, glass fibre-reinforced epoxy composites with nanoparticle modified matrix systems were produced and investigated. GFRPs containing different volume fractions of the nanofillers were produced via resin transfer moulding. Matrix dominated mechanical properties of the GFRP laminates could be improved by the incorporation of nanoparticles. The addition of only 0.3 wt.% CNTs to the epoxy matrix increased the interlaminar shear strength from 33.4 to 38.7 MPa (+16%). Furthermore, the application of electrically conductive nanoparticles enables the production of conductive nanocomposites. This offers a high potential for antistatic applications and the implementation of functional properties in the composite structures. The effects of different filler types and volume fractions on the electrical properties of the GFRPs were investigated. GFRPs containing 0.3 wt.% of CNTs, for example, exhibit an anisotropic electrical conductivity. Furthermore, an electrical field was applied to the composites during curing. The effects on the resulting electrical and mechanical properties are discussed.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 712
Author(s):  
Carola Esposito Corcione ◽  
Francesca Ferrari ◽  
Raffaella Striani ◽  
Laura Dubrulle ◽  
Paolo Visconti ◽  
...  

In our previous study, an innovative method for sterilization, inertization, and valorization of the organic fraction of municipal solid waste (OFMSW), to be recycled in the production of composite panels, was developed. In this follow-up work, the effects of fire retardants on fire performance, durability, and the mechanical properties of the composite panels based on OFMSW and melamine-formaldehyde resin were investigated. The performance of panels without fire retardants (control panels) was compared to panels containing either mono-ammonium phosphate (PFR) or aluminium trihydrate (ATH) at a mass fraction of 1% and 10% (modified panels). As shown by cone calorimetry, the total heat released was already low (about 31 MJ/m2 at 50 kW/m2) in the control panels, further decreased in the modified panels with the addition of fire retardants, and reached the lowest value (about 1.4 MJ/m2) with 10% mass fraction of PFR. Hence, the addition of fire retardants had a beneficial effect on the response to fire of the panels; however, it also reduced the mechanical properties of the panels as measured by flexural tests. The deterioration of the mechanical properties was particularly obvious in panels containing 10% mass fraction of fire retardants, and they were further degraded by artificial accelerated weathering, carried out by boiling tests. Ultimately, the panels containing PFR at a mass fraction of 1% offered the best balance of fire resistance, durability, and mechanical performance within the formulations investigated in this study.


2010 ◽  
Vol 70 (14) ◽  
pp. 2063-2067 ◽  
Author(s):  
Shirley Zhiqi Shen ◽  
Stuart Bateman ◽  
Patrick McMahon ◽  
Mel Dell’Olio ◽  
Januar Gotama ◽  
...  

2015 ◽  
Vol 72 ◽  
pp. 54-59 ◽  
Author(s):  
Umar Adli Amran ◽  
Sarani Zakaria ◽  
Chin Hua Chia ◽  
Sharifah Nabihah Syed Jaafar ◽  
Rasidi Roslan

2018 ◽  
Vol 53 (12) ◽  
pp. 1705-1715 ◽  
Author(s):  
Yousof M Ghazzawi ◽  
Andres F Osorio ◽  
Michael T Heitzmann

The fire performance of polycarbonate resin and the role of glass fibre reinforcement in altering the fire performance was investigated. Three different fibre weaves with comparable surface density, plain, twill, and unidirectional glass fabrics, were used as reinforcements. E-glass fabrics were solution-impregnated with polycarbonate/dichloromethyl, laid up, and compression-moulded to consolidate the glass fibre reinforced polycarbonate composite. Cone calorimetry tests with an incident radiant flux of 35 kW/m2 were used to investigate the fire properties of polycarbonate resin and its composites. Results showed that glass fibre reinforcement improves polycarbonate performance by delaying its ignition, decreasing its heat release rate, and lowering the mass loss rate. The three fibre weave types exhibited similar time to ignition. However, unidirectional fibre had a 35% lower peak heat release rate followed when compared to plain and twill weave fibres.


Sign in / Sign up

Export Citation Format

Share Document