Fire performance of continuous glass fibre reinforced polycarbonate composites: The effect of fibre architecture on the fire properties of polycarbonate composites

2018 ◽  
Vol 53 (12) ◽  
pp. 1705-1715 ◽  
Author(s):  
Yousof M Ghazzawi ◽  
Andres F Osorio ◽  
Michael T Heitzmann

The fire performance of polycarbonate resin and the role of glass fibre reinforcement in altering the fire performance was investigated. Three different fibre weaves with comparable surface density, plain, twill, and unidirectional glass fabrics, were used as reinforcements. E-glass fabrics were solution-impregnated with polycarbonate/dichloromethyl, laid up, and compression-moulded to consolidate the glass fibre reinforced polycarbonate composite. Cone calorimetry tests with an incident radiant flux of 35 kW/m2 were used to investigate the fire properties of polycarbonate resin and its composites. Results showed that glass fibre reinforcement improves polycarbonate performance by delaying its ignition, decreasing its heat release rate, and lowering the mass loss rate. The three fibre weave types exhibited similar time to ignition. However, unidirectional fibre had a 35% lower peak heat release rate followed when compared to plain and twill weave fibres.

2020 ◽  
pp. 089270572092513
Author(s):  
Yousof Ghazzawi ◽  
Andres F Osorio ◽  
Darren Martin ◽  
Asanka P Basnayake ◽  
Michael T Heitzmann

The fire performance of fibre-reinforced polypropylene (PP) was investigated with respect to fibre length and modification of the matrix. Fibre lengths of 3 mm, 12 mm, and continuous fibres were used as reinforcements. E-glass continuous fabrics were melt impregnated with PP and consolidated via compression moulding. E-glass fibre-reinforced PP pellets of 3 and 12 mm were compression moulded. Cone calorimetry tests with incident radiant fluxes of 20, 30 and 35 kW m−2 were used to investigate the fire properties of PP glass fibre composites. Results showed that continuous glass fibre reinforced PP exhibits the best fire performance at 20 kW m−2, while 3-mm fibre has the best performance at 35 kW m−2; 12-mm fibre-reinforced PP exhibitedthe lowest performance in comparison with 3-mm and continuous glass fibre reinforcement. Melic-anhydride (MA)-modified PP was found to increase the heat release rate (HRR) by up to 44% and time to ignition by up to 10% depending on the heat flux applied in comparison with unmodified PP. The glass fibre-reinforced composite made with MA-modified PP has 5–12% lower mean HRR and similar time to ignition in comparison with glass fibre composite made by unmodified PP. This suggests improved fibre adhesion plays a role of the fire performance of glass fibre-reinforced PP.


2007 ◽  
Vol 334-335 ◽  
pp. 737-740
Author(s):  
Russel J. Varley ◽  
Andrew M. Groth ◽  
Kok Hoong Leong

This paper presents results of a study carried out to evaluate the effects of an organomodified nanoclay, either on its own or in combination with a polyimide, upon the fire performance of a commercially available nylon. The fire performance, as determined using cone calorimetry showed that up to 40% improvement in the peak heat release rate could be achieved at addition levels of only around 5wt% of nanoclay. The level of improvement was shown to be strongly dependent upon nanoscale dispersion with a more highly exfoliated morphology, as determined using transmission electron microscopy, which showed a greater reduction in the peak heat release rate compared to a more ordered intercalated structure. Investigation of the mechanism of fire retardancy showed that the reduction in the heat release rate is due to the nanoclay reinforcing the char layer which prevented combustible products from entering in to the gaseous phase. Generally, though, the time to ignition is unaffected by nanoclay additions. The addition of the polyimide to the nanoclay reinforced nylon was inconclusive showing little evidence of further improvements in fire performance.


2016 ◽  
Vol 35 (2) ◽  
pp. 118-131
Author(s):  
Junfeng Hou ◽  
Zhiyong Cai ◽  
Keyang Lu

Combustion performance for three types of wood–aluminum composites was investigated using cone calorimetry tests. The results revealed that time to ignition of the specimens was increased and more than 100 times after the lamination of 1.6-mm-thick aluminum alloy sheet on the surface (from 17 to 1990 s). And residual mass of the wood–aluminum composites was improved and almost quadrupled (from 21.795% to 81.664%). The peak heat release rate, average heat release rate, total heat release, and mean mass loss rate of wood–aluminum composites with 1.6-mm-thick aluminum alloy sheet on the surface were decreased to 70.18%, 48.71%, 24.27%, and 80.60%, respectively. However, yields of both CO and CO2 are slightly improved with the increase in the thickness of aluminum alloy sheet because of incomplete combustion. The application of aluminum alloy sheets to the wood-based composites is an effective method for improving the combustion performance.


2019 ◽  
Vol 37 (3) ◽  
pp. 257-272 ◽  
Author(s):  
Chenkai Zhu ◽  
Jingjing Li ◽  
Mandy Clement ◽  
Xiaosu Yi ◽  
Chris Rudd ◽  
...  

This study investigated the effect of intumescent mats (M1 and M2) with different compositions on the post-fire performance of carbon fibre reinforced composites. The sandwich structure was designed for composites where M1 (carbon fibre reinforced composite-M1) or M2 (carbon fibre reinforced composite-M2) mats were covered on the composite surface. A significant reduction in the peak heat release rate and total heat release was observed from the cone calorimetric data, and carbon fibre reinforced composite-M1 showed the lowest value of 148 kW/m2 and 29 MJ/m2 for peak heat release rate and total heat release, respectively. In addition, a minor influence on mechanical properties was observed due to the variation of composite thickness and resin volume in the composite. The post-fire properties of composite were characterised, and the M1 mat presented better retention of flexural strength and modulus. The feasibility of two-layer model was confirmed to predict the post-fire performance of composites and reduce the reliance on the large amounts of empirical data.


2014 ◽  
Vol 592-594 ◽  
pp. 380-384 ◽  
Author(s):  
K. Ramanaiah ◽  
A.V. Ratna Prasad ◽  
K. Hema Chandra Reddy

Natural fiber composites (NFC) and glass fiber composites (GFC) have been prepared by incorporating elephant grass fibers and glass fibers in to polyester matrix via hand layup technique. In this study, the fire properties of composites have been evaluated by cone calorimeter. The addition of elephant grass fiber has effectively reduced the average heat release rate (Av. HRR) and peak heat release rate (PHRR) of the matrix by 28 %, and 36 %, respectively. Maximum average heat rate emission and carbon monoxide yield of the bio composites decrease substantially compared with that of matrix. However, average carbon dioxide yield, and total smoke release values of matrix are slightly increased with the addition of the elephant grass fiber. The NFC ignites earlier, release greater levels of heat when compared with that of GFC. Average HRR, PHRR and THR values of NFC are about 39%, 71% and 38% greater than those of GFC, respectively. Further, theoretical models were used to predict time to flashover and FO classification of composites.


2014 ◽  
Vol 1004-1005 ◽  
pp. 77-84 ◽  
Author(s):  
Zhen Lu Zhang ◽  
Dong Li Li ◽  
Wen Cai Xu ◽  
Ya Bo Fu ◽  
Rui Juan Liao

This work reports the flammability properties of Nanocomposites reinforced with silica and PTFE nanoparticles and toughened with an elastomeric ethylene-vinyl acetate (EVA). Through trial and simulation study of the flame retardant thermoplastic polymer and melting characteristics of PP in the combustion process.The study found that modified PP composites have good flame retardancy compared to PP in case of fire relatively.In the study,the melting characteristics of the thermoplastic polymer affected the mass loss rate in the combustion stage.Nanocomposites experienced low plastic mass loss compared with PP, this has been related to pyrolysis mechanism of polymer.In general,The polymers undergoing depolymerization will lead to a rapid volatilization and therefore experienced much less melting.The results showed that:total heat release of nanocomposites was higher than polypropylene, while the average heat release rate, the maximum heat release rate, the average effective heat of combustion, the average mass loss rate, the average specific extinction area, and other indicators were lower than polypropylene.


Wood Research ◽  
2021 ◽  
Vol 66 (6) ◽  
pp. 933-942
Author(s):  
ZHIGANG WU ◽  
XUE DENG ◽  
LIFEN LI ◽  
LIPING YU ◽  
JIE CHEN ◽  
...  

A high-efficiency fire retardant composition was prepared with dicyandiamide, phosphoric acid, boric acid, borax, urea and magnesium sulfate and it was used to process veneers which were then to prepare the plywood. Meanwhile, heat release and smoke release from combustion of plywood were tested by a cone calorimeter, including heat release rate, mass loss rate, CO yield, CO2 yield and oxygen consumption. Results showed that the plywood with this fire retardant treatment had the better flame-retardant performance and smoke suppression effect as well as the stronger char-forming capability compared to plywood without fire retardant treatment. The average heat release rate, total heat release, average effective heat of combustion, total smoke release, CO yield and oxygen consumption of the plywood with fire retardant treatment were decreased by 63.72%, 91.94%, 53.70%, 76.81%, 84.99% and 91.86%, respectively. Moreover, the fire growth index of plywood treated by fire retardant was relatively low (3.454 kW·m-2·s-1) and it took longer time to reach the peak heat release rate, accompanied with slow fire spreading. The fire performance index was relatively high (0.136 s·m2·kW-1) and it took longer time to be ignited, thus leaving a long time for escaping at fire accidents. The fire hazard of plywood with fire retardant treatment was low, and its safety level was high.


2004 ◽  
Vol 23 (2) ◽  
pp. 225-230 ◽  
Author(s):  
Jun Zhang ◽  
Xuyun Wang ◽  
Feng Zhang ◽  
A Richard Horrocks

Author(s):  
Qiang Xu ◽  
G. J. Griffin ◽  
XuHong Miao ◽  
ZhenYu Xu ◽  
Y. Jiang

Tests were conducted with ISO 9705 room to investigate the combustion behavior of medium size wood cribs. Cribs were burnt at the center and corner inside ISO room and also under the hood of the ISO room. Effective heat of combustion and increase rate of heat release rate in growth phase is compared for cribs with different nominal heat release rate and in different positions. The relationship between scaled steady mass loss rate and porosity factor of wood crib is quite different from those in literatures. The average effect heat of combustion is 12.18 MJ kg−1, which is close to commonly accepted value 12 MJ kg−1 for wood sample burning with diffusion flame.


Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 2998 ◽  
Author(s):  
Giuseppina Barra ◽  
Liberata Guadagno ◽  
Luigi Vertuccio ◽  
Bartolome Simonet ◽  
Bricio Santos ◽  
...  

Different industrial mixing methods and some of their combinations ((1) ultrasound; (2) mechanical stirring; (3) by roller machine; (4) by gears machine; and (5) ultrasound radiation + high stirring) were investigated for incorporating multi-walled carbon nanotubes (MWCNT) into a resin based on an aeronautical epoxy precursor cured with diaminodiphenylsulfone (DDS). The effect of different parameters, ultrasound intensity, number of cycles, type of blade, and gear speed on the nanofiller dispersion were analyzed. The inclusion of the nanofiller in the resin causes a drastic increase in the viscosity, preventing the homogenization of the resin and a drastic increase in temperature in the zones closest to the ultrasound probe. To face these challenges, the application of high-speed agitation simultaneously with the application of ultrasonic radiation was applied. This allowed, on the one hand, a homogeneous dispersion, and on the other hand, an improvement of the dissipation of heat generated by ultrasonic radiation. The most efficient method was a combination of ultrasound radiation assisted by a high stirring method with the calendar, which was used for the preparation of a carbon fiber reinforced panel (CFRP). The manufactured panel was subjected to dynamic and vibroacoustic tests in order to characterize structural damping and sound transmission loss properties. Under both points of view, the new formulation demonstrated an improved efficiency with reference to a standard CFRP equivalent panel. In fact, for this panel, the estimated damping value was well above the average of the typical values representative of the carbon fiber laminates (generally less than 1%), and also a good vibroacoustic performance was detected as the nanotube based panel exhibited a higher sound transmission loss (STL) at low frequencies, in correspondence with the normal mode participation region. The manufactured panel was also characterized in terms of fire performance using a cone calorimeter and the results were compared to those obtained using a commercially available monocomponent RTM6 (Hexcel composites) epoxy aeronautic resin with the same process and the same fabric and lamination. Compared to the traditional RTM6 resin, the panel with the epoxy nanofilled resin exhibits a significant improvement in fire resistance properties both in terms of a delay in the ignition time and in terms of an increase in the thermal resistance of the material. Compared to the traditional panel, made in the same conditions as the RTM6 resin, the time of ignition of the nanotube-based panel increased by 31 seconds while for the same panel, the heat release rate at peak, the average heat release rate, and the total heat release decreased by 21.4%, 48.5%, and 15%, respectively. The improvement of the fire performance was attributed to the formation of a non-intumescent char due to the simultaneous presence of GPOSS and carbon nanotubes.


Sign in / Sign up

Export Citation Format

Share Document