scholarly journals Electrosprayed Chitin Nanofibril/Electrospun Polyhydroxyalkanoate Fiber Mesh as Functional Nonwoven for Skin Application

2020 ◽  
Vol 11 (3) ◽  
pp. 62 ◽  
Author(s):  
Bahareh Azimi ◽  
Lily Thomas ◽  
Alessandra Fusco ◽  
Ozlem Ipek Kalaoglu-Altan ◽  
Pooja Basnett ◽  
...  

Polyhydroxyalkanoates (PHAs) are a family of bio-based polyesters that have found different biomedical applications. Chitin and lignin, byproducts of fishery and plant biomass, show antimicrobial and anti-inflammatory activity on the nanoscale. Due to their polarities, chitin nanofibril (CN) and nanolignin (NL) can be assembled into micro-complexes, which can be loaded with bioactive factors, such as the glycyrrhetinic acid (GA) and CN-NL/GA (CLA) complexes, and can be used to decorate polymer surfaces. This study aims to develop completely bio-based and bioactive meshes intended for wound healing. Poly(3-hydroxybutyrate)/Poly(3-hydroxyoctanoate-co-3-hydroxydecanoate), P(3HB)/P(3HO-co-3HD) was used to produce films and fiber meshes, to be surface-modified via electrospraying of CN or CLA to reach a uniform distribution. P(3HB)/P(3HO-co-3HD) fibers with desirable size and morphology were successfully prepared and functionalized with CN and CLA using electrospinning and tested in vitro with human keratinocytes. The presence of CN and CLA improved the indirect antimicrobial and anti-inflammatory activity of the electrospun fiber meshes by downregulating the expression of the most important pro-inflammatory cytokines and upregulating human defensin 2 expression. This natural and eco-sustainable mesh is promising in wound healing applications.

2020 ◽  
Vol 144 ◽  
pp. 111586 ◽  
Author(s):  
Rosanna Avola ◽  
Giuseppe Granata ◽  
Corrada Geraci ◽  
Edoardo Napoli ◽  
Adriana Carol Eleonora Graziano ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (11) ◽  
pp. 2695
Author(s):  
Mehmet Evren Okur ◽  
Ayşe Esra Karadağ ◽  
Neslihan Üstündağ Okur ◽  
Yağmur Özhan ◽  
Hande Sipahi ◽  
...  

The air-dried aerial parts of Phlomis russeliana (Sims) Lag. Ex Benth. was extracted by methanol and fractionated by n-hexane, dichloromethane, and ethyl acetate, respectively. The wound healing properties of P. russeliana extract gel was evaluated using the in vivo excisional wound model using Balb-c mice. Initially, the P. russeliana methanol extract showed LOX inhibitory activity at IC50 = 23.2 µg/mL, whereas the DPPH• assay showed IC50 = 0.89 mg/mL, and the ABTS• assay showed IC50 = 0.99 mg/mL, respectively. In addition, a remarkable anti-inflammatory activity was observed in the cell culture assay. Thereafter, activity-guided fractionation was performed by LOX enzyme inhibition assays, and the structures of the two most active fractions were revealed by both GC–FID and GC/MS analyses, simultaneously. Phytol and 1-heptadecanoic acid were characterized as the active constituents. Moreover, the P. russeliana extract gel formulation was applied for in vivo tests, where the new gel formulation supported the in vitro anti-inflammatory activity findings. As a conclusion, this experimental results support the wound healing evidence based on the ethnobotanical application of Phlomis species with further potential.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 730
Author(s):  
Francisco Fernández-Campos ◽  
Francesc Navarro ◽  
Adrian Corrales ◽  
Jordi Picas ◽  
Eloy Pena ◽  
...  

A new cyclodextrin polypseudorotaxanes nail lacquer (Regenail®) containing biotin, methyl sulphonyl methane (MSM), and dimethylsilanediol salicylate was developed and evaluated in vitro and in vivo. The product was developed to improve nail status and diminish signs of pathological nail alterations. A reference product (Betalfatrus®) was used for comparative purposes. An in vitro permeation experiment in hooves showed high MSM and biotin absorption. The content of sulfur and silicon in hooves was also found to be higher compared with the reference product. MSM was tested in human keratinocytes, exhibiting a good cytotoxicity profile and anti-inflammatory activity by the reduction in IL-8 and TNF-α under LPS stimuli. A clinical study was performed to check product safety and efficacy against nail brittleness and alterations such as Beau’s lines and onychorrhexis. A reduction in both alterations and in surface roughness without alteration of nail structure was observed, with a good level of patient acceptance and satisfaction.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1501
Author(s):  
Camila Folle ◽  
Natalia Díaz-Garrido ◽  
Elena Sánchez-López ◽  
Ana Maria Marqués ◽  
Josefa Badia ◽  
...  

The present work is focused on the development of novel surface-functionalized poly(lactic-co-glycolic acid) nanoparticles loaded with thymol (TH-NPs) for topical administration enhancing thymol anti-inflammatory, antioxidant and wound healing activities against acne. TH-NPs were prepared by solvent evaporation method using different surface functionalization strategies and obtaining suitable physicochemical parameters and a good short-term stability at 4 °C. Moreover, TH-NPs skin penetration and antioxidant activity were assessed in ex vivo pig skin models. Skin penetration of TH-NPs followed the follicular route, independently of the surface charge and they were able to enhance antioxidant capacity. Furthermore, antimicrobial activity against Cutibacterium acnes was evaluated in vitro by the suspension test showing improved antibacterial performance. Using human keratinocyte cells (HaCat), cytotoxicity, cellular uptake, antioxidant, anti-inflammatory and wound healing activities were studied. TH-NPs were non-toxic and efficiently internalized inside the cells. In addition, TH-NPs displayed significant anti-inflammatory, antioxidant and wound healing activities, which were highly influenced by TH-NPs surface modifications. Moreover, a synergic activity between TH-NPs and their surface functionalization was demonstrated. To conclude, surface-modified TH-NPs had proven to be suitable to be used as anti-inflammatory, antioxidant and wound healing agents, constituting a promising therapy for treating acne infection and associated inflammation.


2019 ◽  
Vol 20 (11) ◽  
pp. 2669 ◽  
Author(s):  
Serena Danti ◽  
Luisa Trombi ◽  
Alessandra Fusco ◽  
Bahareh Azimi ◽  
Andrea Lazzeri ◽  
...  

Chitin and lignin, by-products of fishery and plant biomass, can be converted to innovative high value bio- and eco-compatible materials. On the nanoscale, high antibacterial, anti-inflammatory, cicatrizing and anti-aging activity is obtained by controlling their crystalline structure and purity. Moreover, electropositive chitin nanofibrlis (CN) can be combined with electronegative nanolignin (NL) leading to microcapsule-like systems suitable for entrapping both hydrophilic and lipophilic molecules. The aim of this study was to provide morphological, physico-chemical, thermogravimetric and biological characterization of CN, NL, and CN-NL complexes, which were also loaded with glycyrrhetinic acid (GA) as a model of a bioactive molecule. CN-NL and CN-NL/GA were thermally stable up to 114 °C and 127 °C, respectively. The compounds were administered to in vitro cultures of human keratinocytes (HaCaT cells) and human mesenchymal stromal cells (hMSCs) for potential use in skin contact applications. Cell viability, cytokine expression and effects on hMSC multipotency were studied. For each component, CN, NL, CN-NL and CN-NL/GA, non-toxic concentrations towards HaCaT cells were identified. In the keratinocyte model, the proinflammatory cytokines IL-1α, IL-1 β, IL-6, IL-8 and TNF-α that resulted were downregulated, whereas the antimicrobial peptide human β defensin-2 was upregulated by CN-LN. The hMSCs were viable, and the use of these complexes did not modify the osteo-differentiation capability of these cells. The obtained findings demonstrate that these biocomponents are cytocompatible, show anti-inflammatory activity and may serve for the delivery of biomolecules for skin care and regeneration.


Author(s):  
Hoda Keshmiri Neghab ◽  
Mohammad Hasan Soheilifar ◽  
Gholamreza Esmaeeli Djavid

Abstract. Wound healing consists of a series of highly orderly overlapping processes characterized by hemostasis, inflammation, proliferation, and remodeling. Prolongation or interruption in each phase can lead to delayed wound healing or a non-healing chronic wound. Vitamin A is a crucial nutrient that is most beneficial for the health of the skin. The present study was undertaken to determine the effect of vitamin A on regeneration, angiogenesis, and inflammation characteristics in an in vitro model system during wound healing. For this purpose, mouse skin normal fibroblast (L929), human umbilical vein endothelial cell (HUVEC), and monocyte/macrophage-like cell line (RAW 264.7) were considered to evaluate proliferation, angiogenesis, and anti-inflammatory responses, respectively. Vitamin A (0.1–5 μM) increased cellular proliferation of L929 and HUVEC (p < 0.05). Similarly, it stimulated angiogenesis by promoting endothelial cell migration up to approximately 4 fold and interestingly tube formation up to 8.5 fold (p < 0.01). Furthermore, vitamin A treatment was shown to decrease the level of nitric oxide production in a dose-dependent effect (p < 0.05), exhibiting the anti-inflammatory property of vitamin A in accelerating wound healing. These results may reveal the therapeutic potential of vitamin A in diabetic wound healing by stimulating regeneration, angiogenesis, and anti-inflammation responses.


Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
F Epifano ◽  
S Genovese ◽  
L Zhao ◽  
V Dang La ◽  
D Grenier

Planta Medica ◽  
2007 ◽  
Vol 73 (09) ◽  
Author(s):  
P Landa ◽  
P Marsik ◽  
T Vanek ◽  
L Kokoska

Sign in / Sign up

Export Citation Format

Share Document