scholarly journals Low Body Fat Does Not Influence Recovery after Muscle-Damaging Lower-Limb Plyometrics in Young Male Team Sport Athletes

2020 ◽  
Vol 5 (4) ◽  
pp. 79
Author(s):  
John F. T. Fernandes ◽  
Kevin L. Lamb ◽  
Craig Twist

Aim: This study assessed the influence of fat mass to fat-free mass ratio (FM:FFM) on recovery from plyometric exercise. Method: After assessment of body composition, 20 male team sport players (age 20.7 ± 1.1 years; body mass 77.1 ± 11.5 kg) were divided into low- (n = 10; 0.11 ± 0.03) and normal- (n = 10; 0.27 ± 0.09) fat groups based on FM:FFM ratio. Thereafter, participants completed measurements of knee extensor torque at 60 and 240°∙s−1, countermovement jump flight time, plasma creatine kinase (CK) activity and perceived muscle soreness (VAS) before and at 0, 24 and 48 h after 10 × 10 maximal plyometric vertical jumps. Results: Evidence of muscle damage was confirmed by alterations in VAS, peak torque at 60 and 240°∙s−1 and flight time at 0, 24 and 48 h after plyometric exercise (P < 0.05). CK was increased at 0 and 24 h (P < 0.05) but returned to baseline values by 48 h. No time by group effects were observed for any of the dependent variables (P > 0.05). Conclusion: The current findings indicate that while muscle damage was present after plyometric exercise, the magnitude was similar across the two body composition groups. Applied practitioners can allow for a similar recovery time after plyometric exercise in those with low and normal body fat.

2015 ◽  
Vol 31 (10) ◽  
pp. 2073-2092 ◽  
Author(s):  
Helen Castillo-Laura ◽  
Iná S. Santos ◽  
Lenice C. M. Quadros ◽  
Alicia Matijasevich

Abstract This study reviewed the evidence that assessed the association between maternal pre-pregnancy body mass index (BMI) and/or gestational weight gain and offspring body composition in childhood. A systematic review was conducted. Cohort studies, case-control studies and randomized controlled trials measuring offspring body composition by indirect methods were included. Meta-analyses of the effect of pre-pregnancy BMI on offspring fat-free mass, body fat percent, and fat mass were conducted through random-effects models. 20 studies were included, most of which reported a positive association of pre-pregnancy BMI with offspring body fat. Standardized mean differences in body fat percent, fat mass and fat-free mass between infants of women with normal pre-pregnancy BMI and those of overweight/obese women were 0.31 percent points (95%CI: 0.19; 0.42), 0.38kg (95%CI: 0.26; 0.50), and 0.18kg (95%CI: -0.07; 0.42), respectively. Evidence so far suggests that pre-pregnancy maternal overweight is associated with higher offspring adiposity.


Sports ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 85 ◽  
Author(s):  
Jennifer Fields ◽  
Justin Merrigan ◽  
Jason White ◽  
Margaret Jones

The purpose of this study was to assess the body composition of male and female basketball athletes (n = 323) across season, year, and sport-position using air displacement plethysmography. An independent sample t-test assessed sport-position differences. An analysis of variance was used to assess within-subjects across season (pre-season, in-season, and off-season), and academic year (freshman, sophomore, and junior). For both men and women basketball (MBB, WBB) athletes, guards had the lowest body fat, fat mass, fat free mass, and body mass. No seasonal differences were observed in MBB, but following in-season play for WBB, a reduction of (p = 0.03) in fat free mass (FFM) was observed. Across years, MBB showed an increase in FFM from freshman to sophomore year, yet remained unchanged through junior year. For WBB across years, no differences occurred for body mass (BM), body fat (BF%), and fat mass (FM), yet FFM increased from sophomore to junior year (p = 0.009). Sport-position differences exist in MBB and WBB: Guards were found to be smaller and leaner than forwards. Due to the importance of body composition (BC) on athletic performance, along with seasonal and longitudinal shifts in BC, strength and conditioning practitioners should periodically assess athletes BC to ensure preservation of FFM. Training and nutrition programming can then be adjusted in response to changes in BC.


2015 ◽  
Vol 45 (1) ◽  
pp. 187-195 ◽  
Author(s):  
Petr Kutáč ◽  
Martin Sigmund

Abstract The goals of this study were to evaluate the basic morphological variables of contemporary elite ice hockey players, compare the parameters of players in the top Russian ice hockey league (KHL) with those of the top Czech ice hockey league (ELH), and to evaluate the parameters of players according to their position in the game. The research participants included 30 KHL players (mean age: 27.1 ± 5.1 years) and 25 ELH players (mean age: 26.4 ± 5.8 years). We determined body height, body mass, and body composition (body fat, fat-free mass, segmental fat analysis). All measurements were performed at the end of preseason training. The KHL players had the following anthropometric characteristics: body height 182.97 ± 5.61 cm (forward) and 185.72 ± 3.57 cm (defenseman), body mass 89.70 ± 5.28 kg (forward) and 92.52 ± 4.01 kg (defenseman), body fat 10.76 ± 0.63 kg (forward) and 11.10 ± 0.48 kg (defenseman), fatfree mass 78.94 ± 4.65 kg (forward) and 81.42 ± 3.52 kg (defenseman). The values for ELH players were as follows: body height 182.06 ± 5.93 cm (forward) and 185.88 ± 7.13 cm (defenseman), body mass 88.47 ± 7.06 kg (forward) and 89.36 ± 10.91 kg (defenseman), body fat 12.57 ± 2.89 kg (forward) and 11.91 ± 3.10 kg (defenseman), fat-free mass 75.93 ± 6.54 kg (forward) and 77.46 ± 7.89 kg (defenseman). The results indicate that it is beneficial to ice hockey players to have increased body mass and lower body fat, which leads to higher muscle mass, thus enabling a player to perform at the highest level and meet the specific challenges of the game.


PEDIATRICS ◽  
1995 ◽  
Vol 95 (1) ◽  
pp. 89-95
Author(s):  
Michael I. Goran ◽  
Mary Kaskoun ◽  
Rachel Johnson ◽  
Charlene Martinez ◽  
Benson Kelly ◽  
...  

Objective. Epidemiologic studies suggest that Native Americans, including the Mohawk people, have a high prevalence of obesity, diabetes, and cardiovascular risk. However, current information on alterations in related variables such as energy metabolism and body composition in Native Americans is almost exclusively limited to already obese Pima adults living in the Southwest. The aim of this study was to characterize energy metabolism and body composition in young Mohawk children (17 girls, 11 boys; aged 4 to 7 years) as compared to Caucasian children (36 girls, 34 boys; aged 4 to 7 years). Total energy expenditure was measured by doubly labeled water, postprandial resting energy expenditure by indirect calorimetry, and activity energy expenditure was derived from the difference between total and resting energy expenditure. Fat and fat free mass were estimated from bioelectrical resistance, and body fat distribution was estimated from skinfolds and circumferences. Results. There were no significant effects of ethnic background or sex on body weight, height, or body mass index. Fat free mass was significantly higher in boys and fat mass was significantly higher in girls, with no effect of ethnic background. Chest skinfold thickness, the ratio of trunk skinfolds:extremity skinfolds, and the waist:hip ratio were significantly higher in Mohawk children by 2.5 mm, 0.09 units, and 0.03 units, respectively, independent of sex and fat mass. Total energy expenditure was significantly higher in Mohawk children compared to Caucasian (100 kcal/day in girls, 150 kcal/day in boys), independent of fat free mass and sex, due to a significantly higher physical activity-related energy expenditure. Conclusion. These data suggest that: 1) body fat is more centrally distributed in Mohawk relative to Caucasian children, and this effect is independent of sex and body fat content; 2) Mohawk children have a greater total energy expenditure than Caucasian children, independent of fat free mass, due to greater physical activity-related energy expenditure.


Nutrients ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2702
Author(s):  
Vasiliki Iatridi ◽  
Rhiannon M. Armitage ◽  
Martin R. Yeomans ◽  
John E. Hayes

Taste hedonics drive food choices, and food choices affect weight maintenance. Despite this, the idea that hyper-palatability of sweet foods is linked to obesity development has been controversial for decades. Here, we investigate whether interpersonal differences in sweet-liking are related to body composition. Healthy adults aged 18–34 years from the UK (n = 148) and the US (n = 126) completed laboratory-based sensory tests (sucrose taste tests) and anthropometric measures (body mass index; BMI, body fat; fat-free mass; FFM, waist/hips circumferences). Habitual beverage intake and lifestyle and behavioural characteristics were also assessed. Using hierarchical cluster analysis, we classified participants into three phenotypes: sweet liker (SL), sweet disliker (SD), and inverted-U (liking for moderate sweetness). Being a SD was linked to higher body fat among those younger than 21 years old, while in the older group, SLs had the highest BMI and FFM; age groups reflected different levels of exposure to the obesogenic environment. FFM emerged as a better predictor of sweet-liking than BMI and body fat. In the older group, sweetened beverage intake partially explained the phenotype–anthropometry associations. Collectively, our findings implicate underlying energy needs as an explanation for the variation in sweet-liking; the moderating roles of age and obesogenic environment require additional consideration.


2018 ◽  
Vol 81 (2) ◽  
pp. 158-173
Author(s):  
Sampriti Debnath ◽  
Nitish Mondal ◽  
Jaydip Sen

Abstract Percent of body fat (PBF), fat mass (FM) and fat free mass (FFM) are useful indicators for the assessment of body composition. The present study was conducted among 1351 children (boys: 660; girls: 691) aged 5-12 years residing in West Bengal, Eastern-India. The children were selected using a stratified random sampling method. Anthropometric measurements of height, weight, triceps skinfold (TSF) and sub-scapular skinfold (SSF) were recorded using standard procedures. The PBF, PBF-for-age z-score (PBFZ) and body mass index (BMI) were subsequently calculated. Body composition was assessed using FM, FFM, fat mass index (FMI) and fat free mass index (FFMI). Age-specific mean values of FM ranged from 2.12-4.00 kg (boys) and 2.16-4.40 kg (girls). Age-specific mean values of FFM ranged from 14.45-23.93 kg (boys) and 14.01-23.03 kg (girls). Sex-specific mean differences between sexes were statistically significant in weight, height, TSF, SSF, PBF, PBFAZ, FM, FFM, FMI and FFMI (p<0.05), except in BMI (p>0.05). These results are important for future investigations in clinical and epidemiological settings so as to accurately identify the risk of lower or higher adiposity and body composition using PBF, FM and FFM.


2007 ◽  
Vol 32 (2) ◽  
pp. 217-224 ◽  
Author(s):  
Kristy Diane Marie Wittmeier ◽  
Rebecca Christine Mollard ◽  
Dean Johannes Kriellaars

Low levels of childhood physical activity (PA) are a contributing factor to obesity. The objective of this study was to determine the adherence of children to PA guidelines in relation to body composition. Body fat (Slaughter equation) and body mass index (BMI) were determined during the school year (n = 251, ages 8–11 y). Daily energy expenditure (EE, kcal·kg–1·d–1) and activity time (AT, min·d–1) above moderate and vigorous intensity thresholds were assessed (accelerometry). Using EE criteria, 35.9% expended < 3.0 kcal·kg–1·d–1, 27.9% expended between 3.0 and 5.9 kcal·kg–1·d–1, 13.5% expended between 6.0 and 7.9 kcal·kg–1·d–1, and 22.9% expended ≥ 8.0 kcal·kg–1·d–1. Using AT criteria, 52.2% accumulated < 30.0 min, 31.1% accumulated 30.0–59.9 min, 12.7% accumulated 60.0–89.9 min, and 4.0% accumulated ≥ 90.0 min of AT. The EE corresponding to accumulation of AT > 90 min was 14.8 kcal·kg–1·d–1. The AT corresponding to ≥ 8 kcal·kg–1·d–1 was 73.0 min. Inverse relationships were observed between EE and body fat (p = 0.0004), BMI (p = 0.002), mass (p = 0.008), and fat mass index (FMI) (p = 0.001), as well as between AT and body fat (p = 0.001), BMI (p = 0.008), mass (p = 0.017), and FMI (p = 0.002). Controlling for BMI, FMI was inversely related to EE (p = 0.049) and AT (p = 0.039). Fat-free mass index and AT were positively related (p = 0.038). Physical activity had beneficial effects on body composition for children independent of BMI. The relationship between AT and daily EE guidelines was rationalized (60 min·d–1 with 8 kcal·kg–1·d–1) and demonstrated association with acceptable body composition. The 60 min·d–1 of moderate activity may be a more suitable initial target than 90 min·d–1, as so few children met the upper tiers of PA guidelines.


2011 ◽  
Vol 107 (7) ◽  
pp. 1085-1091 ◽  
Author(s):  
Andrew S. Jackson ◽  
Ian Janssen ◽  
Xuemei Sui ◽  
Timothy S. Church ◽  
Steven N. Blair

Obesity and sarcopenia are health problems associated with ageing. The present study modelled the longitudinal changes in body composition of healthy men, aged from 20 to 96 years, and evaluated the fidelity of BMI to identify age-dependent changes in fat mass and fat-free mass. The data from 7265 men with multiple body composition determinations (total observations 38 328) were used to model the age-related changes in body mass, fat mass, fat-free mass, BMI and percentage of body fat. Changes in fat mass and fat-free mass were used to evaluate the fidelity of BMI and to detect body composition changes with ageing. Linear mixed regression models showed that all trajectories of body composition with healthy ageing were quadratic. Fat mass, BMI and percentage of body fat increased from age 20 years and levelled off at approximately 80 years. Fat-free mass increased slightly from age 20 to 47 years and then declined at a non-linear rate with ageing. Levels of aerobic exercise had a positive influence on fat mass and a slight negative effect on fat-free mass. BMI and percentage of body fat were sensitive in detecting the increase in fat mass that occurred with healthy ageing, but failed to identify the loss of fat-free mass that started at age 47 years.


1990 ◽  
Vol 64 (1) ◽  
pp. 121-131 ◽  
Author(s):  
F. R. Dunshea ◽  
A. W. Bell ◽  
T. E. Trigg

A two-pool model of tritiated water kinetics was used to estimate the major body water pools, and hence body composition, in goats at days 10, 38 and 76 of lactation. Between days 10 and 38 of lactation goats were, on average, in negative calculated energy balance and were estimated to have mobilized 59 g body fat stores/d. Mean calculated energy balance over days 38–76 of lactation was slightly positive and there was little change in estimated body fat. Gut fill increased over the early part of lactation when goats were mobilizing body fat. Consequently, live weight did not differ at any stage of lactation and did not provide a good index of body fat status of the goats. There were also no significant differences in empty-body-weight, water, protein, ash or fat-free mass at the three stages of lactation. As average calculated energy balance and changes in energy stored as fat were highly correlated, it is concluded that the two-pool model of tritiated water kinetics is a useful means of serially estimating changes in body fat content in unfasted lactating goats.


2008 ◽  
Vol 105 (5) ◽  
pp. 1486-1491 ◽  
Author(s):  
Sean Walsh ◽  
Dongmei Liu ◽  
E. Jeffrey Metter ◽  
Luigi Ferrucci ◽  
Stephen M. Roth

The R577X polymorphism in the α-actinin-3 encoding gene ( ACTN3) has been associated with elite athletic performance, and recently with differences in isometric and dynamic muscle strength and power in the general population. In this study we sought to determine the association of ACTN3 R577X genotype with muscle strength and mass phenotypes in men and women across the adult age span. Eight hundred forty-eight ( n = 848) adult volunteers (454 men and 394 women) aged 22–90 yr were genotyped for ACTN3 R577X. Knee extensor (KE) shortening and lengthening peak torque values were determined using isokinetic dynamometry and fat-free mass (FFM) by dual-energy X-ray absorptiometry. Women deficient in α-actinin-3 (X/X; n = 53) displayed lower KE shortening peak torque (30°/s: 89.5 ± 3.5 vs. 99.3 ± 1.4 N·m, P = 0.011; 180°/s: 60.3 ± 2.6 vs. 67.0 ± 1.0 N·m, P = 0.019) and KE lengthening peak torque (30°/s: 122.8 ± 5.7 vs. 137.0 ± 2.2 N·m, P = 0.022; 180°/s: 121.8 ± 5.8 vs. 138.5 ± 2.2 N·m, P = 0.008) compared with R/X + R/R women ( n = 341). Women X/X homozygotes also displayed lower levels of both total body FFM (38.9 ± 0.5 vs. 40.1 ± 0.2 kg, P = 0.040) and lower limb FFM (11.9 ± 0.2 vs. 12.5 ± 0.1 kg, P = 0.044) compared with R/X + R/R women. No genotype-related differences were observed in men. In conclusion, our results indicate that the absence of α-actinin-3 protein (i.e., ACTN3 X/X genotype) influences KE peak torque and FFM in women but not men.


Sign in / Sign up

Export Citation Format

Share Document