scholarly journals Free Surface Reconstruction for Phase Accurate Irregular Wave Generation

2018 ◽  
Vol 6 (3) ◽  
pp. 105 ◽  
Author(s):  
Ankit Aggarwal ◽  
Csaba Pákozdi ◽  
Hans Bihs ◽  
Dag Myrhaug ◽  
Mayilvahanan Alagan Chella

The experimental wave paddle signal is unknown to the numerical modellers in many cases. This makes it quite challenging to numerically reproduce the time history of free surface elevation for irregular waves. In the present work, a numerical investigation is performed using a computational fluid dynamics (CFD) based model to validate and investigate a non-iterative free surface reconstruction technique for irregular waves. In the current approach, the free surface is reconstructed by spectrally composing the irregular wave train as a summation of the harmonic components coupled with the Dirichlet inlet boundary condition. The verification is performed by comparing the numerically reconstructed free surface elevation with theoretical input waves. The applicability of the present approach to generate irregular waves by reconstructing the free surface is investigated for different coastal and marine engineering problems. A numerical analysis is performed to validate the free surface reconstruction approach to generate breaking irregular waves over a submerged bar. The wave amplitudes, wave frequencies and wave phases are modelled with good accuracy in the time-domain during the higher-order energy transfers and complex processes like wave shoaling, wave breaking and wave decomposition. The present approach to generate irregular waves is also employed to model steep irregular waves in deep water. The free surface reconstruction method is able to simulate the irregular free surface profiles in deep water with low root mean square errors and high correlation coefficients. Furthermore, the irregular wave forces on a monopile are investigated in the time-domain. The amplitudes and phases of the force signal under irregular waves generated by using the current technique are modelled accurately in the time-domain. The proposed approach to numerically reproduce the free surface elevation in the time-domain provides promising and accurate results for all the benchmark cases.

2017 ◽  
Vol 372 ◽  
pp. 81-90 ◽  
Author(s):  
Rodrigo C. Lisboa ◽  
Paulo R.F. Teixeira ◽  
Eric Didier

This paper describes the analysis of the propagation of regular and irregular waves in a flume by using Fluent® model, which is based on the Navier-Stokes (NS) equations and employs the finite volume method and the Volume of Fluid (VoF) technique to deal with two-phase flows (air and water). At the end of the flume, a numerical beach is used to suppress wave reflections. The methodology consists of adding a damping sink term to the momentum equation. In this study, this term is calibrated for three cases of regular incident waves (H = 1 m, T = 5, 7.5, and 12 s) by varying the linear and quadratic damping coefficients of the formulation. In general, while lower values of damping coefficients cause residuals on the free surface elevation due to wave interactions with the outlet boundary, reflection occurs on the numerical beach when higher values are used. A range of optimal damping coefficients are found considering one of them null. In one of these cases, temporal series of free surface elevation are compared with theoretical ones and very good agreement is reached. Afterwards, an irregular wave propagation, characterized by a JONSWAP spectrum, is investigated. Several gauges along the flume are evaluated and good agreement between the spectrum obtained numerically and the ones imposed at beginning of the flume is verified. This study shows the capacity of NS models, such as Fluent®, to simulate adequately regular and irregular wave propagations in a flume with numerical beach to avoid reflections.


2021 ◽  
Author(s):  
Ting Cui ◽  
Arun Kamath ◽  
Weizhi Wang ◽  
Lihao Yuan ◽  
Duanfeng Han ◽  
...  

Abstract The correct estimation of wave loading on a cylinder in a cylinder group under different impact scenarios is essential to determine the structural safety of coastal and offshore structures. This scenario differs from the interaction of waves with a single cylinder but not a lot of studies focus on cylinder groups under different arrangements. In this study, the interaction between plunging breaking waves and cylinder groups in deep water is investigated using the two-phase flow model in REEF3D, an open-source computational fluid dynamics program. The Reynolds-averaged Navier-Stokes equation with the two equation k–Ω turbulence model is adopted to resolve the numerical wave tank, with free surface calculated using the level set method. In this study, focused waves in deep water were modeled with a fixed wave steepness method. Wave breaking occurs when the steepness of the wave crest front satisfies the breaking criteria. The model is validated by comparing the numerical wave forces and free surface elevation with measurements from experiments. The computational results show fairly good agreement with experimental data for both free surface elevation and wave forces. Four cases are simulated to investigate the interaction of breaking waves with a cylinder group with different relative distance, number of cylinders and arrangement. Results show that breaking wave forces on the upstream cylinder are smaller than on a single cylinder with a relative distance of one cylinder diameter. The wave forces on cylinders in the pile group are effected by the relative distance between cylinders. The staggered arrangement has a significant influence on the wave forces on the first and second cylinder. The interaction inside a cylinder group mostly happens between the neighbouring cylinders. These interactions are also effected by the relative distance and the numbers of the neighbouring cylinders.


Author(s):  
Bo Terp Paulsen ◽  
Henrik Bredmose ◽  
Harry B. Bingham ◽  
Signe Schløer

Two-dimensional irregular waves on a sloping bed and their impact on a bottom mounted circular cylinder is modeled by three different numerical methods and the results are validated against laboratory experiments. We here consider the performance of a linear-, a fully nonlinear potential flow solver and a fully nonlinear Navier-Stokes/VOF solver. The validation is carried out in terms of both the free surface elevation and the inline force. Special attention is paid to the ultimate load in case of a single wave event and the general ability of the numerical models to capture the higher harmonic forcing. The test case is representative for monopile foundations at intermediate water depths. The potential flow computations are carried out in a two-dimensional vertical plane and the inline force on the cylinder is evaluated by the Morison equation. The Navier-Stokes/VOF computations are carried out in three-dimensions and the force is obtained by spatial pressure integration over the wettet area of the cylinder. In terms of both the free surface elevation and the inline force, the linear potential flow model is shown to be of limited accuracy and large deviations are generally seen when compared to the experimental measurements. The fully nonlinear Navier-Stokes/VOF computations are accurately predicting both the free surface elevation and the inline force. However, the computational cost is high relative to the potential flow solvers. Despite the fact that the nonlinear potential flow model is carried out in two-dimensions it is shown to perform just as good as the three-dimensional Navier-Stokes/VOF solver. This is observed for both the free surface elevation and the inline force, where both the ultimate load and the higher harmonic forces are accurately predicted. This shows that for moderately steep irregular waves a Morison equation combined with a fully nonlinear two-dimensional potential flow solver can be a good approximation.


2014 ◽  
Vol 26 (12) ◽  
pp. 122101 ◽  
Author(s):  
Guillaume Gomit ◽  
Germain Rousseaux ◽  
Ludovic Chatellier ◽  
Damien Calluaud ◽  
Laurent David

Author(s):  
Witold Cies´likiewicz ◽  
Ove T. Gudmestad

A parametric model linking the free-surface elevations with the fluid acceleration field under an irregular wave is developed. In order to estimate the parameters of the model, system identification procedures are applied based on data recorded in a wave tank. The free-surface time series are taken as input data and the output data are components of the particle acceleration vector. The particle acceleration time series were obtained by taking the numerical derivative of the measured orbital velocity time series. A simple algorithm of numerical diffrentiation is proposed. This algorithm gives very accurate values of the particle acceleration and is quite straightforward as the derivative is computed directly in time domain. A linear time-invariant model with the static nonlinearities incorporated at the input side is assumed. This paper demonstrates the results of modelling the horizontal component of the particle acceleration in comparison with the time series calculated from wave kinematics data taken in a wave flume during an earlier experiment using Laser Doppler Velocimetry. The modelled particle acceleration time series compare well with those calculated from the observed velocity time series. This proves the effectiveness of the applied approach. The system identification techniques allow for preparing the model which constructs the wave kinematics (both velocities and accelerations) using the measured time series of only the free-surface elevation. This feature of the proposed approach may be very useful in maritime engineering and oceanography.


Author(s):  
João Pessoa ◽  
Carl Trygve Stansberg ◽  
Nuno Fonseca ◽  
Manuel Laranjinha

The region over the pontoons, especially in the vicinity of columns, is typically a critical area in terms of upwell when analyzing the air gap of semisubmersible platforms. There is indication that numerical computations using potential flow theory may in some cases overestimate the free surface elevation in this region. To assess the possibility, experimental data is compared to numerical computations in three locations under the deck box: one location over the pontoons, one location in the vicinity of the pontoons and one location between the pontoons. The data was acquired in FORCE’s towing tank facility, in Lyngby, Denmark, by relative wave gauges fixed to the moored semisubmersible platform. The experimental data is treated in order to remove the global motions from the upwell signal. The resulting free surface elevation, which includes contributions from incident, diffracted and radiated wave fields, is compared to the disturbed free surface elevation calculated with linear diffraction-radiation theory. The study is initially conducted in irregular waves, where simulation statistics in 4 different sea states are compared to the experiments and the observed nonlinear effects are discussed. The extreme crest heights are compared with non-Gaussian models as defined in DNVGL-OTG-13 and as defined by Stansberg (2014). The study is then extended to regular waves. In a first stage we estimate the first harmonic components by removing all higher order effects, and compare the results to linear theory. For these band-pass filtered signals it is shown that results calculated with linear theory tend to overestimate free surface elevation in the location over the pontoons, but seem to correlate well with the experiments in the other locations. In a second stage the experimental crest heights are compared with non-linear models as defined in DNVGL-OTG-13 and as defined by Stansberg (2014). It is shown in this case study that the maximum free surface elevation over the pontoons in front of upwave columns can be severely overestimated if calculated with the current state of the art numerical models, which are based on linear diffraction-radiation theory. We explain the observed discrepancy in this case primarily by a very high linear predicted amplification induced by the shallow pontoon, with resulting high local steepness leading to local breaking and dissipation. Therefore, such pontoon effects should be addressed in semisubmersible platform air-gap analysis. The work also highlights the importance of having good experimental data available when preforming such analysis.


Author(s):  
Hans Bihs ◽  
Mayilvahanan Alagan Chella ◽  
Arun Kamath ◽  
Øivind Asgeir Arntsen

For the stability of offshore structures, such as offshore wind foundations, extreme wave conditions need to be taken into account. Waves from extreme events are critical from the design perspective. In a numerical wave tank, extreme waves can be modeled using focused waves. Here, linear waves are generated from a wave spectrum. The wave crests of the generated waves coincide at a preselected location and time. Focused wave generation is implemented in the numerical wave tank module of REEF3D, which has been extensively and successfully tested for various wave hydrodynamics and wave–structure interaction problems in particular and for free surface flows in general. The open-source computational fluid dynamics (CFD) code REEF3D solves the three-dimensional Navier–Stokes equations on a staggered Cartesian grid. Higher order numerical schemes are used for time and spatial discretization. For the interface capturing, the level set method is selected. In order to test the generated waves, the time series of the free surface elevation are compared with experimental benchmark cases. The numerically simulated free surface elevation shows good agreement with experimental data. In further computations, the impact of the focused waves on a vertical circular cylinder is investigated. A breaking focused wave is simulated and the associated kinematics is investigated. Free surface flow features during the interaction of nonbreaking focused waves with a cylinder and during the breaking process of a focused wave are also investigated along with the numerically captured free surface.


Author(s):  
Valentina Laface ◽  
Giovanni Malara ◽  
Felice Arena ◽  
Ioannis A. Kougioumtzoglou ◽  
Alessandra Romolo

The paper addresses the problem of deriving the nonlinear, up to the second order, crest wave height probability distribution in front of a vertical wall under the assumption of finite spectral bandwidth, finite water depth and long-crested waves. The distribution is derived by relying on the Quasi-Deterministic representation of the free surface elevation in front of the vertical wall. The theoretical results are compared against experimental data obtained by utilizing a compressive sensing algorithm for reconstructing the free surface elevation in front of the wall. The reconstruction is pursued by starting from recorded wave pressure time histories obtained by utilizing a row of pressure transducers located at various levels. The comparison shows that there is an excellent agreement between the proposed distribution and the experimental data and confirm the deviation of the crest height distribution from the Rayleigh one.


Author(s):  
Kévin Martins ◽  
Philippe Bonneton ◽  
David Lannes ◽  
Hervé Michallet

AbstractThe inability of the linear wave dispersion relation to characterize the dispersive properties of non-linear shoaling and breaking waves in the nearshore has long been recognised. Yet, it remains widely used with linear wave theory to convert between sub-surface pressure, wave orbital velocities and the free surface elevation associated with non-linear nearshore waves. Here, we present a non-linear fully dispersive method for reconstructing the free surface elevation from sub-surface hydrodynamic measurements. This reconstruction requires knowledge of the dispersive properties of the wave field through the dominant wavenumbers magnitude κ, representative in an energy-averaged sense of a mixed sea-state composed of both free and forced components. The present approach is effective starting from intermediate water depths - where non-linear interactions between triads intensify - up to the surf zone, where most wave components are forced and travel approximately at the speed of non-dispersive shallow-water waves. In laboratory conditions, where measurements of κ are available, the non-linear fully dispersive method successfully reconstructs sea-surface energy levels at high frequencies in diverse non-linear and dispersive conditions. In the field, we investigate the potential of a reconstruction that uses a Boussinesq approximation of κ, since such measurements are generally lacking. Overall, the proposed approach offers great potential for collecting more accurate measurements under storm conditions, both in terms of sea-surface energy levels at high frequencies and wave-by-wave statistics (e.g. wave extrema). Through its control on the efficiency of non-linear energy transfers between triads, the spectral bandwidth is shown to greatly influence non-linear effects in the transfer functions between sub-surface hydrodynamics and the sea-surface elevation.


1978 ◽  
Vol 1 (3) ◽  
pp. 373-390
Author(s):  
Lokenath Debnath ◽  
Uma Basu

A theory is presented of the generation and propagation of the two and the three dimensional tsunamis in a shallow running ocean due to the action of an arbitrary ocean floor or ocean surface disturbance. Integral solutions for both two and three dimensional problems are obtained by using the generalized Fourier and Laplace transforms. An asymptotic analysis is carried out for the investigation of the principal features of the free surface elevation. It is found that the propagation of the tsunamis depends on the relative magnitude of the given speed of the running ocean and the wave speed of the shallow ocean. When the speed of the running ocean is less than the speed of the shallow ocean wave, both the two and the three dimensional free surface elevation represent the generation and propagation of surface waves which decay asymptotically ast−12for the two dimensional case and ast−1for the three dimensional tsunamis. Several important features of the solution are discussed in some detail. As an application of the general theory, some physically realistic ocean floor disturbances are included in this paper.


Sign in / Sign up

Export Citation Format

Share Document