scholarly journals The Effect of Cold and Warm Anomalies on Phytoplankton Pigment Composition in Waters off the Northern Baja California Peninsula (México): 2007–2016

2020 ◽  
Vol 8 (7) ◽  
pp. 533 ◽  
Author(s):  
Adriana González-Silvera ◽  
Eduardo Santamaría-del-Ángel ◽  
Víctor Camacho-Ibar ◽  
Jorge López-Calderón ◽  
Jonatan Santander-Cruz ◽  
...  

In this study, we report the response of phytoplankton community composition to cold and warm interannual events affecting the waters off the Baja California Peninsula from 2007 to 2016 based on data obtained from a single marine station (31.75° N/116.96° W). Included variables were satellite chlorophyll a, sea surface temperature (MODIS/Aqua), upwelling intensity, and field data (phytoplankton pigments, inorganic nutrients, light penetration). Phytoplankton pigments were determined by high performance liquid chromatography, and CHEMTAX software was used to determine the relative contributions of the main taxonomic groups to chlorophyll a. Our results confirm the decrease in phytoplankton biomass due to the influence of the recent Pacific Warm Anomaly (2014) and El Niño 2015–2016. However, this decrease was especially marked at the surface. When data from the entire water column was considered, this decrease was not significant, because at the subsurface Chla did not decrease as much. Nevertheless, significant changes in community composition occurred in the entire water column with Cyanobacteria (including Prochlorococcus) and Prymnesiophytes being dominant at the surface, while Chlorophytes and Prasinophytes made a strong contribution at the subsurface. Analysis of the spatial distribution of SST and satellite chlorophyll a made it possible to infer the spatial extension of these anomalies at a regional scale.

2010 ◽  
Vol 61 (5) ◽  
pp. 625 ◽  
Author(s):  
Jim Greenwood

Increased biological and chemical reaction rates within permeable continental-shelf sediment can result from the action of passing surface waves, especially when the seabed is rippled. The effect of this on the exchange of nitrogen between the sediment and water column is the focus of the present paper. The continental shelf of Western Australia is used as an example. A time series of chlorophyll a is compared with surface-wave height revealing seasonal and sub-seasonal correlation between the two variables. At the same time, results from a coupled pelagic–benthic biogeochemical model show that temperature-controlled changes in sedimentary nitrogen efflux cannot account for the observed seasonal changes in chlorophyll a in the overlying water column. It is proposed that enhanced pore-water circulation within the sediment, caused by the action of passing surface waves, results in an increase in the efflux of nitrogen from the sediment during winter, supporting higher pelagic phytoplankton production. The parameterisation of sedimentary nitrogen mineralisation as a function of the square of wave height is suggested for the inclusion of this effect in regional-scale continental shelf models.


1998 ◽  
Vol 55 (1) ◽  
pp. 206-219 ◽  
Author(s):  
Alan D Steinman ◽  
Karl E Havens ◽  
J William Louda ◽  
Nancy M Winfree ◽  
Earl W Baker

Pigment abundances of the oxygenic and anoxygenic photoautotrophic communities from sediments and the water column in Lake Okeechobee, Florida, were estimated using reverse-phase high-performance liquid chromatographic (RP-HPLC) and photodiode array (PDA) UV/VIS (350-800 nm) spectrophotometric analyses. Thirty lipophilic pigments were identified and measured in the samples, with the most abundant overall (sediment and open-water samples combined) being chlorophyll a (38.1%), fucoxanthin (12.6%), pheophytin a (7.6%), zeaxanthin (6.6%), and pyropheophytin a (3.6%). Relative abundance of chlorophyll a was greater in the water column than in the sediments (58.3 versus 24.3% of all pigments) whereas pheophytin a comprised 9.1% of the total pigments in the sediments but only 3.7% of the total pigments in the water column. Principal component analysis (PCA) separated the sediment samples from those collected in the water column; this discrimination appears to be a function of pigment integrity in that sediment assemblages had much greater relative abundances of degraded pigments. Different regions of the lake were weakly separated by PCA based on pigments. The relatively weak degree of separation may reflect the overwhelming abundance of chlorophyll a at all sites. Overall, the pigment assemblage in Lake Okeechobee suggests cyanobacteria-diatom dominance. Out of 65 sampling events, pigments from anoxygenic photoautotrophs (e.g., bacteriochlorophylls) were detected 17 times but accounted for >20% of total chlorophyll only five times. Bacteriochlorophylls were observed only in the sediments and were most abundant during June and September, when winds were calm and temperatures warm, and at relatively shallow sites.


2018 ◽  
Vol 44 (3) ◽  
pp. 293-298
Author(s):  
Fernando R. Elorriaga-Verplancken ◽  
Patricia Meneses ◽  
Abraham Cárdenas-Llerenas ◽  
Wayne Phillips ◽  
Abel de la Torre ◽  
...  

2021 ◽  
Vol 255 ◽  
pp. 112237
Author(s):  
H. Lavigne ◽  
D. Van der Zande ◽  
K. Ruddick ◽  
J.F. Cardoso Dos Santos ◽  
F. Gohin ◽  
...  

2021 ◽  
Vol 13 (6) ◽  
pp. 1134
Author(s):  
Anas El-Alem ◽  
Karem Chokmani ◽  
Aarthi Venkatesan ◽  
Lhissou Rachid ◽  
Hachem Agili ◽  
...  

Optical sensors are increasingly sought to estimate the amount of chlorophyll a (chl_a) in freshwater bodies. Most, whether empirical or semi-empirical, are data-oriented. Two main limitations are often encountered in the development of such models. The availability of data needed for model calibration, validation, and testing and the locality of the model developed—the majority need a re-parameterization from lake to lake. An Unmanned aerial vehicle (UAV) data-based model for chl_a estimation is developed in this work and tested on Sentinel-2 imagery without any re-parametrization. The Ensemble-based system (EBS) algorithm was used to train the model. The leave-one-out cross validation technique was applied to evaluate the EBS, at a local scale, where results were satisfactory (R2 = Nash = 0.94 and RMSE = 5.6 µg chl_a L−1). A blind database (collected over 89 lakes) was used to challenge the EBS’ Sentine-2-derived chl_a estimates at a regional scale. Results were relatively less good, yet satisfactory (R2 = 0.85, RMSE= 2.4 µg chl_a L−1, and Nash = 0.79). However, the EBS has shown some failure to correctly retrieve chl_a concentration in highly turbid waterbodies. This particularity nonetheless does not affect EBS performance, since turbid waters can easily be pre-recognized and masked before the chl_a modeling.


Author(s):  
JONATHAN T. HAGSTRUM ◽  
MICHAEL McWILLIAMS ◽  
DAVID G. HOWELL ◽  
SHERMAN GROMMÉ

2006 ◽  
Vol 36 (7) ◽  
pp. 1287-1304 ◽  
Author(s):  
Lucia Bunge ◽  
Christine Provost ◽  
Jonathan M. Lilly ◽  
Marc D’Orgeville ◽  
Annie Kartavtseff ◽  
...  

Abstract This paper presents initial results from new velocity observations in the eastern part of the equatorial Atlantic Ocean from a moored current-meter array. During the “EQUALANT” program (1999–2000), a mooring array was deployed around the equator near 10°W that recorded one year of measurements at various depths. Horizontal velocities were obtained in the upper 60 m from an upward-looking acoustic Doppler current profiler (ADCP) and at 13 deeper levels from current meters between 745 and 1525 m. To analyze the quasiperiodic variability observed in these records, a wavelet-based technique was used. Quasiperiodic oscillations having periods between 5 and 100 days were separated into four bands: 5–10, 10–20, 20–40, and 40–100 days. The variability shows (i) a strong seasonality (the first half of the series is dominated by larger periods than the second one) and (ii) a strong dependence with depth (some oscillations are present in the entire water column while others are only present at certain depths). For the oscillations that are present in the entire water column the origin of the forcing can be traced to the surface, while for the others the question of their origin remains open. Phase shifts at different depths generate vertical shears in the horizontal velocity component with relatively short vertical scales. This is especially visible in long-duration events (>100 days) of the zonal velocity component. Comparison with a simultaneous lowered acoustic Doppler current profiler (LADCP) section suggests that some of these flows may be identified with equatorial deep jets. A striking feature is a strong vertical shear lasting about 7 months between 745 and 1000 m. These deep current-meter observations would then imply a few months of duration for the jets in this region.


2009 ◽  
Vol 29 (1) ◽  
pp. 237-244 ◽  
Author(s):  
Ricardo Bórquez Reyes ◽  
Oscar Alberto Pombo ◽  
Germán Ponce Díaz

Sign in / Sign up

Export Citation Format

Share Document