scholarly journals Electronic Constant Twist Angle Control System Suitable for Torsional Vibration Tuning of Propulsion Systems

2020 ◽  
Vol 8 (9) ◽  
pp. 721
Author(s):  
Jaroslav Homišin ◽  
Peter Kaššay ◽  
Matej Urbanský ◽  
Michal Puškár ◽  
Robert Grega ◽  
...  

Currently, great emphasis on reducing energy consumption and harmful emissions of internal combustion engines is placed. Current control technology allows us to customize the operating mode according to the currently required output parameters, while the tuning of mechanical systems in terms of torsional vibration is often ignored. This article deals with a semi-active torsional vibroisolation system using pneumatic flexible shaft coupling with constant twist angle control. This system is suitable, as it is specially designed, for the tuning of mechanical systems where the load torque has fan characteristics (fans, ship propellers, pumps). The main goal of this research is to verify the ability of an electronic control system developed by us to maintain the pre-set constant twist angle of the used pneumatic flexible shaft coupling during operation. The constant twist angle control function was tested on a laboratory torsional oscillating mechanical system. Presented results show that the proposed electronic control system meets the requirements for its function, namely that it can achieve, sufficiently accurately and quickly, the desired constant twist angle of the pneumatic flexible shaft coupling. It is possible to assume that the presented system will increase the technical level of the equipment where it will be applied.

Author(s):  
Serhii Kovalov

The expediency and advantages of using gas motor fuels, in particular, liquefied petroleum gas with respect to traditional liquid motor fuels, are shown. Technical solutions for the use of liquefied petroleum gas by diesel engines are presented and analysed. The expediency and advantages of converting diesel engines to gas spark ignition internal combustion engines with respect to conversion to gas diesel engines. Developed by the Ukrainian synthesis technology Avenir Gaz has for converting diesel engines to gas internal combustion engines with spark ignition. According to the synthesis technology of Avenir Gaz, re-equipment of diesel engines of vehicles is carried out on the basis of the universal electronic control system for gas internal combustion engines, which is based on the multifunctional electronic microprocessor control unit Avenir Gaz 37. The developed electronic microprocessor control system for gas internal combustion engines with forced ignition has a modular structure and consists of two main and a number of additional subsystems. A schematic diagram of a universal electronic control system of a gas internal combustion engine with spark ignition for operation on liquefied petroleum gas is presented. The principle of operation of the main subsystems, which include the subsystem of power management and injection of liquefied petroleum gas by gas electromagnetic injectors into the intake manifold of a gas engine, and the principle of operation of the control subsystem of the ignition with two-spark ignition coils are described. A multifunctional electronic control unit Avenir Gaz 37 has been designed and manufactured. Non-motorized tests of the electronic control unit confirmed its performance. Based on the synthesis technology of Avenir Gaz using the universal electronic control system for gas internal combustion engines with the Avenir Gaz 37 ECU, the D-240 diesel engine was converted into a gas spark ignition internal combustion engine of the D-240-LPG model. Keywords: gas internal combustion engine with forced ignition, liquefied petroleum gas (LPG), electronic microprocessor control system for gas internal combustion engines, vehicles operating on LPG.


2012 ◽  
Vol 233 ◽  
pp. 119-122
Author(s):  
Yan Jie Li ◽  
Tian Yu Cui ◽  
Ji Hai Jiang ◽  
Cai Xin Yu

Abstract. Based on the load-sensing control principle, a novel type of electronic load sensing hydraulic system was developed. Taking a two-loads system for example, the design and analysis of the novel hydraulic system principle was completed and an electronic control system was accomplished using TTC60 controller. A preliminary experimental study was completed. The experimental studies show that the new system can not only achieve the traditional load-sensing control function, but also improve the level of electronic control system.


2021 ◽  
pp. 1-17
Author(s):  
Shilin Peng ◽  
Xiao Jiang ◽  
Yongzhen Tang ◽  
Chong Li ◽  
Xiaodong Li ◽  
...  

Abstract Subglacial lake exploration is of great interest to the science community. RECoverable Autonomous Sonde (RECAS) provides an exploration tool to measure and sample subglacial lake environments while the subglacial lake remains isolated from the glacier surface and atmosphere. This paper presents an electronic control system design of 200 m prototype of RECAS. The proposed electronic control system consists of a surface system, a downhole control system, and a power transfer and communication system. The downhole control system is the core element of RECAS, and is responsible for sonde status monitoring, sonde motion control, subglacial water sampling and in situ analysis. A custom RS485 temperature sensor was developed to cater for the limited size and depth requirements of the system. We adopted a humidity-based measurement to monitor for a housing leak. This condition is because standard leak detection monitoring of water conductivity may be inapplicable to pure ice in Antarctica. A water sampler control board was designed to control the samplers and monitor the on/off state. A high-definition camera system with built-in storage and self-heating ability was designed to perform the video recording in the subglacial lake. The proposed electronic control system is proven effective after a series of tests.


2012 ◽  
Vol 503-504 ◽  
pp. 1580-1583
Author(s):  
Hui Shan Yu ◽  
Shou Hui Zhang ◽  
Xiao Kua Ji ◽  
Xin Jian Liu

According to some problems of Low efficiency of the current domestic Textile Machine,Reliability is bad,The operating personnel labor intensity,A single product varieties and so on. Design of electronic control system of high-grade textile machine based on CAN Bus. The system with RENESAS SH7047 chips as the controller chip, Realize the all of the interrupt signal, sensor signal detection, fuzzy PID algorithm and main shaft encoder location, Through the CAN bus transmission way to complete accuracy control ac servo system. The actual operation commissioning proves the electronic control system has the fast response, and robust, more kinds of textile and so on.


Author(s):  
Kai Peng ◽  
Fan Yang ◽  
Ding Fan ◽  
Linfeng Gou ◽  
Hongliang Xiao ◽  
...  

A helicopter auxiliary power unit (APU) is initially equipped with a hydro-mechanical control system (HMC). Because HMC's complex structure is difficult to be modified to realize sophisticated control algorithms and the APU is faced with the need for performance improvement, it is urgently necessary to carry out digital control modification of HMC. Based on the analysis of control laws of the original HMC and differences between HMC and digital control system, key techniques involved in the digital control system are studied, such as overall structure, control laws and fuel system based on electric fuel pump, and finally a full authority digital electronic control system (FADEC) is developed for APU. Functions, performances and key techniques of the FADEC system are evaluated on test rig, and the test results show functions of original control system are enhanced and performances of APU are improved more effectively under the control of the designed FADEC compared with the original HMC.


Author(s):  
Thomas E. Russell ◽  
Crystal Heshmat ◽  
Dennis Locke

A novel, high-speed, high temperature, oil-free, foil thrust bearing test rig has been developed with a critical element being a double-acting, active magnetic thrust bearing. The magnetic thrust bearing is used to react against loads applied to the foil thrust bearing under test. The magnetic bearing has the capability of reacting against thrust loads of up to 2224 N (500 pounds) at speeds to 80,000 rpm, while the rotor is supported by foil journal bearings. Two issues that are especially challenging for this test rig are magnetic material selection and the electronic control system. The magnetic material selection is critical due to the high centrifugal stresses that occur at 80,000 rpm. The electronic control system must handle the non-linear variation in stiffness and damping that is seen by the magnetic thrust bearing as the foil thrust bearing is loaded, as well as maintain rotor system stability as the foil bearing is purposefully overloaded to the point of failure to discover maximum load and performance capabilities. This paper describes the design of the active magnetic thrust bearing, the material selection process, and the development of a digital signal processor based control system. Typical experimental data obtained during operation of the test rig will also be presented.


Sign in / Sign up

Export Citation Format

Share Document