scholarly journals A Unified Approach for Underwater Homing and Docking of over-Actuated AUV

2021 ◽  
Vol 9 (8) ◽  
pp. 884
Author(s):  
Mingjiu Zuo ◽  
Guandao Wang ◽  
Yongxin Xiao ◽  
Gong Xiang

During the implementation of time-consuming tasks such as underwater observation or detection, AUV has to face a difficult and urgent problem that its working duration is greatly shortened by the limited energy stored in the battery device. To solve the power problem, a docking station is installed underwater for AUV charging its battery. However, to realize the automatic underwater charging of AUV via a docking station, the accurate and efficient completion of underwater homing and docking is required for AUV. Underwater automatic homing and docking system is of great significance to improve work efficiency and prolong the endurance of AUV save cost. In this paper, a unified approach that involves such as task planning, guidance and control design, thrust allocation has been proposed to provide a complete solution to the problem of homing and docking of an over-actuated AUV. The task-based hybrid target point/line planning and following strategy are proposed for AUV homing and docking. At the beginning of homing, AUV is planned to follow a straight line via the line of sight (LoS) method. Afterward, AUV starts to follow multiple predefined target points until reaching the docking station. At the final stage of docking (within 10 m), a dedicated computer vision algorithm is applied to detect a newly designed LED light array fixed on the docking station to provide accurate guidance for the AUV to dock. The sliding mode control technique is used for the motion control of the AUV allowing robustness. As the AUV configured with eight thrusters is over-actuated, the problem of the thrust allocation is very important and successfully solved using the quadratic programming (QP) optimization method. Finally, the simulations of homing and docking tasks using the AUV are accomplished to verify the proposed approach.

2021 ◽  
Vol 11 (19) ◽  
pp. 9108
Author(s):  
Zahra Samadikhoshkho ◽  
Shahab Ghorbani ◽  
Farrokh Janabi-Sharifi

Aerial continuum manipulation systems (ACMSs) were newly introduced by integrating a continuum robot (CR) into an aerial vehicle to address a few issues of conventional aerial manipulation systems such as safety, dexterity, flexibility and compatibility with objects. Despite the earlier work on decoupled dynamic modeling of ACMSs, their coupled dynamic modeling still remains intact. Nonlinearity and complexity of CR modeling make it difficult to design a coupled ACMS model suitable for practical applications. This paper presents a coupled dynamic modeling for ACMSs based on the Euler–Lagrange formulation to deal with CR and the aerial vehicle as a unified system. For this purpose, a general vertical take-off and landing vehicle equipped with a tendon-driven continuum arm is considered to increase the dexterity and compliance of interactions with the environment. The presented model is independent of the motor’s configuration and tilt angles and can be applied to model any under/fully actuated ACMS. The modeling approach is complemented with a Lyapunov-wise stable adaptive sliding mode control technique to demonstrate the validity of the proposed method for such a complex system. Simulation results in free flight motion scenarios are reported to verify the effectiveness of the proposed modeling and control techniques.


Author(s):  
Bin Zhao ◽  
Zhenxin Feng ◽  
Jianguo Guo

The problem of the integrated guidance and control (IGC) design for strap-down missile with the field-of-view (FOV) constraint is solved by using the integral barrier Lyapunov function (iBLF) and the sliding mode control theory. Firstly, the nonlinear and uncertainty state equation with non-strict feedback form for IGC design is derived by using the strap-down decoupling strategy. Secondly, a novel adaptive finite time disturbance observer is proposed to estimate the uncertainties based on an improved adaptive gain super twisting algorithm. Thirdly, the special time-varying sliding variable is designed and the iBLF is employed to handle the problem of FOV constraint. Theoretical derivation and simulation show that the IGC system is globally uniformly ultimately bounded and the FOV angle constraint is also guaranteed not only during the reaching phase but also during the sliding mode phase.


2012 ◽  
Vol 349 (2) ◽  
pp. 493-509 ◽  
Author(s):  
Zhang Zexu ◽  
Wang Weidong ◽  
Li Litao ◽  
Huang Xiangyu ◽  
Cui Hutao ◽  
...  

Author(s):  
Diane L. Peters ◽  
Panos Y. Papalambros ◽  
A. Galip Ulsoy

Optimization of smart products requires optimizing both the artifact design and its controller. The presence of coupling between the design and control problems is an important consideration in choosing the system optimization method. Several measures of coupling have been proposed based on different viewpoints of the system. In this paper, two measures of coupling, a vector based on optimality conditions and a matrix derived from an extension of the global sensitivity equations, are shown to be related under certain conditions and to be consistent in their coupling determination. The measures’ physical interpretation and relative ease of use are discussed using the example of a positioning gantry. A further relation is derived between one measure and a modified sequential formulation that would give results sufficiently close to the true solutions.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Junbiao Guan ◽  
Kaihua Wang

A new fractional-order chaotic system is addressed in this paper. By applying the continuous frequency distribution theory, the indirect Lyapunov stability of this system is investigated based on sliding mode control technique. The adaptive laws are designed to guarantee the stability of the system with the uncertainty and external disturbance. Moreover, the modified generalized projection synchronization (MGPS) of the fractional-order chaotic systems is discussed based on the stability theory of fractional-order system, which may provide potential applications in secure communication. Finally, some numerical simulations are presented to show the effectiveness of the theoretical results.


Author(s):  
Hui Li ◽  
Linxuan Zhang ◽  
Tianyuan Xiao ◽  
Jietao Dong

This paper introduces a CPS application for intelligent aeroplane assembly. At first, the CPS structure is presented, which acquires the characteristics of general CPS and enables "simulation-based planning and control" to achieve high level intelligent assembly. Then the paper puts forward data fusion estimation algorithm under synchronous and asynchronous sampling, respectively. The experiment shows that global optimal distributed fusion estimation under synchronized sampling proves to be closer to the actual value compared with ordinary weighted estimation, and multi-scale distributed fusion estimation algorithm of wavelet under asynchronous sampling does not need time registration, it can also directly link to data, and the error is smaller. This paper presents hybrid control strategy under the circumstance of joint action of the inner and outer loop to address the problems caused by the less controllable feature of the parallel mechanism when undertaking online process simulation and control. A robust adaptive sliding mode controller is designed based on disturbance observer to restrain inner interference and maintain robustness. At the same time, an outer collaborative trajectory planning is also designed. All the experiment results show the feasibility of above proposed methods.


Sign in / Sign up

Export Citation Format

Share Document