Phase stabilization and control technique with improved precision

1986 ◽  
Vol 25 (12) ◽  
pp. 1871 ◽  
Author(s):  
Gordon R. Little
Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7514
Author(s):  
S.M. Ferdous ◽  
Farhad Shahnia ◽  
GM Shafiullah

The two common mechanisms of load-shedding and renewable curtailment can prevent provisional overloading and excessive generation and the subsequent unacceptable voltage and frequency deviation in standalone microgrids (MGs), which makes MGs less resilient and reliable. However, instead of enabling load-shedding or renewable curtailment, such overloading or over-generation problems can be alleviated more efficiently and cost-effectively by provisionally interconnecting the neighboring MGs to exchange power amongst themselves. In such a scheme, the interconnected MGs can supply their local demand, as well as a portion of the demand of the adjacent MGs. In order to implement this strategy, a three-phase ac link can be used as the power exchange network, while each MG is coupled to the link through a back-to-back power electronics converter, in order to maintain the autonomy of each MG if they are eachoperated under different standards. This paper proposes a suitable decentralized power management strategy without a communication link between the MGs to achieve power-sharing amongst them and alleviate unacceptable voltage and frequency deviation along with the required control technique for the power electronic converters, which can be implemented at the primary level based on the measurement of the local parameters only. To this end, one of the converters should always regulate the dc link voltage while the other converter should operate in droop control mode when the MG is healthy and in constant PQ mode when overloaded or over-generating. Suitable status detection and mode transition algorithms and controllers were also developed and are proposed in this paper. The performance of the proposed power exchange and control mechanisms were evaluated and verified via PSIM®-based numerical simulation studies. The stability and sensitivity of the proposed power exchange topology are also analyzed against several critical design and operational parameters.


2014 ◽  
Vol 889-890 ◽  
pp. 380-384
Author(s):  
Zhi Liu ◽  
Peng Fang ◽  
Di Wu ◽  
Dong Li

This article describes the design process of pumping stations of crawler full hydraulic drilling rig. The principle of full hydraulic drilling rig pumping station,scheme selection, hydraulic components selection and structural design of the tank were presented. The system used double loops in which some advanced hydraulic components and control technique were adopt.


2013 ◽  
Vol 712-715 ◽  
pp. 831-834
Author(s):  
Xiao Jie Chen

Materials in sports building space plays not only a supporting role but also an important part of building exhibition. With the rise of intelligent and ecological buildings, as a building enclosure material properties and role will become more prominent. New advances in technology make material has been not just enclosure system, but with the external environment for building dialogue interface, visual, structure and control technique of bonding layer. How effectively function technology element integration in material artistic expressive force is the important thing in current material design.


2004 ◽  
Author(s):  
V. I. Babitsky ◽  
I. J. Sokolov

Analysis of strongly nonlinear systems revealed an existence of nonlinear modes of vibration with spatial and temporal concentration of energy. The modes can be realised, for example, through intensification of the vibration process by condensing the vibration into a sequence of collisions for impulsive action of the tools to the media being treated or can be as a result of some discontinuity (slackening of a contact, arrival of crack etc.) in the structure. The use of the nonlinear modes to develop useful mechanical work leads to necessity of excitation and control of resonance in ill-defined dynamical systems. This is due to the poorly predictable response of the media being treated. Excitation, stabilisation and control of a nonlinear mode at the top intensity in such systems is an engineering challenge and needs a new method of adaptive control for its realisation. Such a control technique was developed with the use of self-exciting mechatronic systems. The excitation of the nonlinear mode in such systems is a result of artificial instability of mechanical system conducted by positive electronic feedback. The instability is controlled by intelligent identification of the mode and active tracing of the optimal relationship between phase shifting and limitation in the feedback circuitry. This method of control is known as autoresonance. Applications of autoresonant control for development of the new machines are described.


2019 ◽  
Vol 304 ◽  
pp. 04011
Author(s):  
Dario Belmonte ◽  
Matteo Davide Lorenzo Dalla Vedova ◽  
Gaetano Quattrocchi

Asymmetry limitation requirements between left and right wing flap surfaces play an important role in the design of the implementation of the secondary flight control system of modern airplanes. In fact, especially in the case of sudden breaking of one of the torsion bars of the flap transmission line, the huge asymmetries that can rapidly develop could compromise the lateral-directional controllability of the whole aircraft (up to cause catastrophic occurrences). Therefore, in order to guarantee the aircraft safety (especially during take-off and landing flight phase in which the effects of asymmetries could generate uncontrollable aircraft attitudes), it is mandatory to timely detect and neutralize these asymmetries. The current monitoring techniques generally evaluate the differential angular position between left and right surfaces and, in most the events, limit the Flaps Control System (FCS) asymmetries, but in severe fault conditions (e.g. under very high aerodynamic loads), unacceptable asymmetries could be generated, compromising the controllability of the aircraft. To this purpose, in this paper the authors propose a new active monitoring and control technique capable of detecting the increasing angular error between the different flap surfaces and that, after stopping the whole actuation system, acts on the portion of the actuation line still connected to the PDU to minimize the FCS asymmetries.


Author(s):  
Yuan Zou ◽  
Ningyuan Guo ◽  
Xudong Zhang

This article proposes an integrated control strategy of autonomous distributed drive electric vehicles. First, to handle the multi-constraints and integrated problem of path following and the yaw motion control, a model predictive control technique is applied to determine optimal front wheels’ steering angle and external yaw moment synthetically and synchronously. For ensuring the desired path-tracking performance and vehicle lateral stability, a series of imperative state constraints and control references are transferred in the form of a matrix and imposed into the rolling optimization mechanism of model predictive control, where the detailed derivation is also illustrated and analyzed. Then, the quadratic programming algorithm is employed to optimize and distribute each in-wheel motor’s torque output. Finally, numerical simulation validations are carried out and analyzed in depth by comparing with a linear quadratic regulator–based strategy, proving the effectiveness and control efficacy of the proposed strategy.


Sign in / Sign up

Export Citation Format

Share Document