scholarly journals Modelling the Impact of Climate Change on Coastal Flooding: Implications for Coastal Structures Design

2021 ◽  
Vol 9 (9) ◽  
pp. 1008 ◽  
Author(s):  
Achilleas Samaras ◽  
Theophanis Karambas

In the present work, the impact of climate change on coastal flooding is investigated through a set of interoperable models developed by the authors, following a modular modelling approach and adapting the modelling sequence to two separate objectives with respect to inundation over large-scale areas and coastal protection structures’ design. The modelling toolbox used includes a large-scale wave propagation model, a storm-induced circulation model, and an advanced nearshore wave propagation model based on the higher order Boussinesq-type equations, all of which are presented in detail. Model capabilities are validated and applications are made for projected scenarios of climate change-induced wave and storm surge events, simulating coastal flooding over the low-lying areas of a semi-enclosed bay and testing the effects of different structures on a typical sandy beach (both in northern Greece). This work is among the few in relevant literature that incorporate a fully non-linear wave model to a modelling system aimed at representing coastal flooding. Results highlight the capabilities of the presented modelling approach and set the basis for a comprehensive evaluation of the use of advanced modelling tools for the design of coastal protection and adaptation measures against future climatic pressures.

Author(s):  
Michalis I. Vousdoukas ◽  
Dimitrios Bouziotas ◽  
Alessio Giardino ◽  
Laurens M. Bouwer ◽  
Evangelos Voukouvalas ◽  
...  

Abstract. An upscaling of flood risk assessment frameworks beyond regional and national scales has taken place during recent years, with a number of large-scale models emerging as tools for hotspot identification, support for international policy-making and harmonization of climate change adaptation strategies. There is, however, limited insight on the scaling effects and structural limitations of flood risk models and, therefore, the underlying uncertainty. In light of this, we examine key sources of epistemic uncertainty in the Coastal Flood Risk (CFR) modelling chain: (i) the inclusion and interaction of different hydraulic components leading to extreme sea-level (ESL); (ii) inundation modelling; (iii) the underlying uncertainty in the Digital Elevation Model (DEM); (iv) flood defence information; (v) the assumptions behind the use of depth-damage functions that express vulnerability; and (vi) different climate change projections. The impact of these uncertainties to estimated Expected Annual Damage (EAD) for present and future climates is evaluated in a dual case study in Faro, Portugal and in the Iberian Peninsula. The ranking of the uncertainty factors varies among the different case studies, baseline CFR estimates, as well as their absolute/relative changes. We find that uncertainty from ESL contributions, and in particular the way waves are treated, can be higher than the uncertainty of the two greenhouse gas emission projections and six climate models that are used. Of comparable importance is the quality of information on coastal protection levels and DEM information. In the absence of large-extent datasets with sufficient resolution and accuracy the latter two factors are the main bottlenecks in terms of large-scale CFR assessment quality.


2011 ◽  
Vol 8 (2) ◽  
pp. 2235-2262
Author(s):  
E. Joigneaux ◽  
P. Albéric ◽  
H. Pauwels ◽  
C. Pagé ◽  
L. Terray ◽  
...  

Abstract. Under certain hydrological conditions it is possible for spring flow in karst systems to be reversed. When this occurs, the resulting invasion by surface water, i.e. the backflooding, represents a serious threat to groundwater quality because the surface water could well be contaminated. Here we examine the possible impact of future climate change on the occurrences of backflooding in a specific karst system, having first established the occurrence of such events in the selected study area over the past 40 yr. It would appear that backflooding has been more frequent since the 1980s, and that it is apparently linked to river flow variability on the pluri-annual scale. The avenue that we adopt here for studying recent and future variations of these events is based on a downscaling algorithm relating large-scale atmospheric circulation to local precipitation spatial patterns. The large-scale atmospheric circulation is viewed as a set of quasi-stationary and recurrent states, called weather types, and its variability as the transition between them. Based on a set of climate model projections, simulated changes in weather-type occurrence for the end of the century suggests that backflooding events can be expected to decrease in 2075–2099. If such is the case, then the potential risk for groundwater quality in the area will be greatly reduced compared to the current situation. Finally, our results also show the potential interest of the weather-type based downscaling approach for examining the impact of climate change on hydrological systems.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1762 ◽  
Author(s):  
Nathan Rickards ◽  
Thomas Thomas ◽  
Alexandra Kaelin ◽  
Helen Houghton-Carr ◽  
Sharad K. Jain ◽  
...  

The Narmada river basin is a highly regulated catchment in central India, supporting a population of over 16 million people. In such extensively modified hydrological systems, the influence of anthropogenic alterations is often underrepresented or excluded entirely by large-scale hydrological models. The Global Water Availability Assessment (GWAVA) model is applied to the Upper Narmada, with all major dams, water abstractions and irrigation command areas included, which allows for the development of a holistic methodology for the assessment of water resources in the basin. The model is driven with 17 Global Circulation Models (GCMs) from the Coupled Model Intercomparison Project Phase 5 (CMIP5) ensemble to assess the impact of climate change on water resources in the basin for the period 2031–2060. The study finds that the hydrological regime within the basin is likely to intensify over the next half-century as a result of future climate change, causing long-term increases in monsoon season flow across the Upper Narmada. Climate is expected to have little impact on dry season flows, in comparison to water demand intensification over the same period, which may lead to increased water stress in parts of the basin.


2020 ◽  
Author(s):  
Liam D. Bailey ◽  
Martijn van de Pol ◽  
Frank Adriaensen ◽  
Emilio Barba ◽  
Paul E. Bellamy ◽  
...  

AbstractThe phenology of many species shows strong sensitivity to climate change; however, with few large scale intra-specific studies it is unclear how such sensitivity varies over a species’ range. We document large intra-specific variation in phenological sensitivity to temperature using laying date information from 67 populations of two European songbirds covering a large part of their breeding range. Populations inhabiting deciduous habitats showed stronger phenological sensitivity compared with those in evergreen and mixed habitats. Strikingly, however, the lowest sensitivity was seen in populations that had experienced the greatest change in climate. Therefore, we predict that the strongest phenological advancement will not occur in those populations with the highest sensitivity. Our results show that to effectively assess the impact of climate change on phenology across a species range it will be necessary to account for intra-specific variation in phenological sensitivity, climate change exposure, and the ecological characteristics of a population.


2018 ◽  
Vol 18 (8) ◽  
pp. 2127-2142 ◽  
Author(s):  
Michalis I. Vousdoukas ◽  
Dimitrios Bouziotas ◽  
Alessio Giardino ◽  
Laurens M. Bouwer ◽  
Lorenzo Mentaschi ◽  
...  

Abstract. An upscaling of flood risk assessment frameworks beyond regional and national scales has taken place during recent years, with a number of large-scale models emerging as tools for hotspot identification, support for international policymaking, and harmonization of climate change adaptation strategies. There is, however, limited insight into the scaling effects and structural limitations of flood risk models and, therefore, the underlying uncertainty. In light of this, we examine key sources of epistemic uncertainty in the coastal flood risk (CFR) modelling chain: (i) the inclusion and interaction of different hydraulic components leading to extreme sea level (ESL), (ii) the underlying uncertainty in the digital elevation model (DEM), (iii) flood defence information, (iv) the assumptions behind the use of depth–damage functions that express vulnerability, and (v) different climate change projections. The impact of these uncertainties on estimated expected annual damage (EAD) for present and future climates is evaluated in a dual case study in Faro, Portugal, and on the Iberian Peninsula. The ranking of the uncertainty factors varies among the different case studies, baseline CFR estimates, and their absolute and relative changes. We find that uncertainty from ESL contributions, and in particular the way waves are treated, can be higher than the uncertainty of the two greenhouse gas emission projections and six climate models that are used. Of comparable importance is the quality of information on coastal protection levels and DEM information. In the absence of large datasets with sufficient resolution and accuracy, the latter two factors are the main bottlenecks in terms of large-scale CFR assessment quality.


2011 ◽  
Vol 15 (8) ◽  
pp. 2459-2470 ◽  
Author(s):  
E. Joigneaux ◽  
P. Albéric ◽  
H. Pauwels ◽  
C. Pagé ◽  
L. Terray ◽  
...  

Abstract. Under certain hydrological conditions it is possible for spring flow in karst systems to be reversed. When this occurs, the resulting invasion by surface water, i.e. the backflooding, represents a serious threat to groundwater quality because the surface water could well be contaminated. Here we examine the possible impact of future climate change on the occurrences of backflooding in a specific karst system, having first established the occurrence of such events in the selected study area over the past 40 years. It would appear that backflooding has been more frequent since the 1980s, and that it is apparently linked to river flow variability on the pluri-annual scale. The avenue that we adopt here for studying recent and future variations of these events is based on a downscaling algorithm relating large-scale atmospheric circulation to local precipitation spatial patterns. The large-scale atmospheric circulation is viewed as a set of quasi-stationary and recurrent states, called weather types, and its variability as the transition between them. Based on a set of climate model projections, simulated changes in weather-type occurrence for the end of the century suggests that backflooding events can be expected to decrease in 2075–2099. If such is the case, then the potential risk for groundwater quality in the area will be greatly reduced compared to the current situation. Finally, our results also show the potential interest of the weather-type based downscaling approach for examining the impact of climate change on hydrological systems.


2009 ◽  
Vol 23 (2) ◽  
pp. 29-51 ◽  
Author(s):  
Richard S. J Tol

I review the literature on the economic impacts of climate change, an externality that is unprecedentedly large, complex, and uncertain. Only 14 estimates of the total damage cost of climate change have been published, a research effort that is in sharp contrast to the urgency of the public debate and the proposed expenditure on greenhouse gas emission reduction. These estimates show that climate change initially improves economic welfare. However, these benefits are sunk. Impacts would be predominantly negative later in the century. Global average impacts would be comparable to the welfare loss of a few percent of income, but substantially higher in poor countries. Still, the impact of climate change over a century is comparable to economic growth over a few years. There are over 200 estimates of the marginal damage cost of carbon dioxide emissions. The uncertainty about the social cost of carbon is large and right-skewed. For a standard discount rate, the expected value is $50/tC, which is much lower than the price of carbon in the European Union but much higher than the price of carbon elsewhere. Current estimates of the damage costs of climate change are incomplete, with positive and negative biases. Most important among the missing impacts are the indirect effects of climate change on economic development; large-scale biodiversity loss; low-probability, high-impact scenarios; the impact of climate change on violent conflict; and the impacts of climate change beyond 2100. From a welfare perspective, the impact of climate change is problematic because population is endogenous, and because policy analyses should separate impatience, risk aversion, and inequity aversion between and within countries.


2021 ◽  
Vol 905 (1) ◽  
pp. 012120
Author(s):  
R M Indriawati ◽  
D Prasetyani

Abstract Countries in ASEAN region have a significant potential for the impact of climate change disruption and disasters such as El Nino, La Nina, earthquakes, tsunamis, volcanic eruptions, hurricanes, floods, tropical storms, landslides, and CO2 emissions. The ASEAN Secretariat recorded a progressive increase in CO2 emission levels of around 61% from 2014 to 2025, more than 90% of transboundary haze from the expansion of large-scale commercial plantations, accumulation of plastic waste and household waste that cannot be properly recycled. The contribution of agriculture, forestry and fisheries is also relatively varied. Geographical conditions, policy orientations of each government, structure of production inputs including human resource competence and technology are thought to determine the adverse effects of climate change on the agriculture, forestry, and fisheries sectors. This study focuses on the impact of climate change on the agriculture, fisheries, and forestry sectors in the ASEAN region. The analytical framework is adapted to the ASEAN Vision 2020 and ASEAN Vision 2021. In addition, a deeper analysis of several climate change impact control instruments such as polluter pays, agricultural insurance, agri-environment climate schemes and payments for environmental services will also be studied. These instruments are directed to achieve environmental sustainability in the ASEAN region.


2018 ◽  
Vol 22 (6) ◽  
pp. 3143-3154 ◽  
Author(s):  
Susanne A. Benz ◽  
Peter Bayer ◽  
Gerfried Winkler ◽  
Philipp Blum

Abstract. Climate change is one of if not the most pressing challenge modern society faces. Increasing temperatures are observed all over the planet and the impact of climate change on the hydrogeological cycle has long been shown. However, so far we have insufficient knowledge on the influence of atmospheric warming on shallow groundwater temperatures. While some studies analyse the implication climate change has for selected wells, large-scale studies are so far lacking. Here we focus on the combined impact of climate change in the atmosphere and local hydrogeological conditions on groundwater temperatures in 227 wells in Austria, which have in part been observed since 1964. A linear analysis finds a temperature change of +0.7 ± 0.8 K in the years from 1994 to 2013. In the same timeframe surface air temperatures in Austria increased by 0.5 ± 0.3 K, displaying a much smaller variety. However, most of the extreme changes in groundwater temperatures can be linked to local hydrogeological conditions. Correlation between groundwater temperatures and nearby surface air temperatures was additionally analysed. They vary greatly, with correlation coefficients of −0.3 in central Linz to 0.8 outside of Graz. In contrast, the correlation of nationwide groundwater temperatures and surface air temperatures is high, with a correlation coefficient of 0.83. All of these findings indicate that while atmospheric climate change can be observed in nationwide groundwater temperatures, individual wells are often primarily dominated by local hydrogeological conditions. In addition to the linear temperature trend, a step-wise model was also applied that identifies climate regime shifts, which were observed globally in the late 70s, 80s, and 90s. Hinting again at the influence of local conditions, at most 22 % of all wells show these climate regime shifts. However, we were able to identify an additional shift in 2007, which was observed by 37 % of all wells. Overall, the step-wise representation provides a slightly more accurate picture of observed temperatures than the linear trend.


Sign in / Sign up

Export Citation Format

Share Document